K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

M A B O D H C

Gọi H là giao điểm của MO và AB => H cố định 

Ta có: \(MA^2=MH.MO\)( hệ thức lượng trong tam giác vuông) 

và \(MA^2=MC.MD\)

=> \(MH.MO=MC.MD\)

=> \(\frac{MH}{MD}=\frac{MC}{MO}\)

=> Dễ  dàng chứng minh được: \(\Delta\)MCH ~ \(\Delta\)MOD 

=> ^MOD = ^MCH 

=> ^COD = ^MCH mà ^MCH + ^HCD = 180 độ 

=> ^COD + ^HCD = 180 độ 

=> CHOD nội tiếp 

=>  đường tròn ngoại tiếp \(\Delta\)COD luôn qua điểm H cố định

a: ΔOCD cân tại O có OK là đường trung tuyến

nên OK vuông góc CD

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA=1/2sđ cung AC

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA

=>MA^2=MD*MC

=>MD*MC ko phụ thuộc vào cát tuyến MCD

 

19 tháng 3 2022

a, Xét tam giác MAD và tam giác MCA có 

^M _ chung 

^MDA = ^MAC ( cùng chắn cung CA ) 

Vậy tam giác MAD ~ tam giác MCA (g.g) 

\(\dfrac{MA}{MC}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.MC\)(1) 

b, Vì MA là tiếp tuyến đường tròn (O) với A tiếp điểm 

Lại có OA = OB = R ; MA = MB ( tc tiếp tuyến cắt nhau ) 

=> OM là trung trực đoạn BA 

Xét tam giác MAO đường cao AH ta có 

\(MA^2=MO.MH\)(2) 

Từ (1) ; (2) suy ra \(MO.MH=MD.MC\)

 

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

10 tháng 4 2022

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

loading...  loading...