K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác ACED có 

H là trung điểm của AE

H là trung điểm của CD

Do đó: ACED là hình bình hành

mà EC=ED

nên ACED là hình thoi

12 tháng 12 2019

a/ 

HC=HD (bán kính vuông góc với dây cung thì chia đôi dây cung)

HA=HE (đề bài)

=> ACED là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà AE vuông góc CD

=> ACED là hình thoi (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi)

b/

Vì ACDE là hình thoi => AD=ED => tg ADE cân tại D

Mà DH vuông góc AE

=> DH là đường cao đồng thời là đường phân giác của ^ADE => ^ADC=^CDI

Ta có \(sđ\widehat{ADC}=\frac{1}{2}sđ\widebat{AC}\)(góc nội tiếp đường tròn (O))

\(sđ\widehat{ABC}=\frac{1}{2}sđ\widebat{AC}\) (góc nội tiếp đường tròn (O))

=> ^CDI=^ABC

Xét tg vuông BCH có

^ABC+^DCB=90 => ^CDI+^DCB=90 => ^CID=90=> ^EIB=90

=> I nhìn EB dưới 1 góc vuông => I thuộc đường trong đường kính EB tâm O' là trung điểm của EB

c/

Xét tg vuông CDI có \(IH=CH=DH=\frac{CD}{2}\) (trung tuyến thuộc cạnh huyền)

=> tg DHI cân tại H => ^CDI=^DIH (1)

Xét tg vuông BIE có \(IO'=EO'=BO'\) (trung tuyến thuộc cạnh huyền)

=> tg BIO' cân tại O' => ^ABC=^BIO' (2)

Mà ^CDI=^ABC (cmt) (3)

Từ (1) (2) (3) => ^DIH=^BIO'

Mà ^BIO'+^O'IE=90 => ^DIH+^O'IE=^HIO'=90 => HI vuông góc IO' => HI là tiếp tuyến của đường tròn (O') tại I

d/

Ta có OA=5 => AB=10

EO'=3=> EB=6

=> AE=AB-EB=10-6=4 => HE=2

=> HO'=HE+EO'=2+3=5

Mà IO'=EO' (cmt)=3

Xét tg vuông HIO' có

\(HI^2=HO'^2-IO'^2=5^2-3^2=16\Rightarrow HI=4\)

a: AH=15-9=6cm

Xét (O) có

ΔABC nội tiép

AB là đường kính

Do đó: ΔCAB vuông tại C

\(CB=\sqrt{BH\cdot BA}=\sqrt{9\cdot15}=3\sqrt{15}\left(cm\right)\)

b:Xét tứ giác CEDA có

H là trung điểm chung của CD và EA

nên CEDA là hình bình hành

=>DA//CE

=>CE vuông góc với BD

CEDA là hình bình hành

nên CA//DE

=>DE vuông góc với CB tại I

=>I nằm trên đường tròn đường kính EB