K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NB là tiếp tuyến

NC là tiếp tuyến

Do đó: NB=NC

Ta có: MN=MC+CN

nên MN=MA+NB

14 tháng 11 2021

Vì M,N là giao 2 tiếp tuyến nên \(AM=MC;BN=ND\)

Lại có \(OA=OB=OC=R\) nên OM,ON lần lượt là trung trực của tam giác OAC và OBC cân tại O

Do đó OM,ON cũng là phân giác của \(\widehat{AOC};\widehat{COB}\)

Vậy \(\widehat{MON}=\widehat{MOC}+\widehat{CON}=\dfrac{1}{2}\left(\widehat{AOC}+\widehat{COB}\right)=90^0\) (kề bù)

24 tháng 2 2019

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).

Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.

Vậy ΔMON vuông tại O.

Góc Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn nên Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 = 900

Tứ giác AOPM có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Suy ra, tứ giác AOPM nội tiếp đường tròn.

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét ∆ MON và ∆ APB có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

=> Hai tam giác MON và APB đồng dạng

b)

* Tam giác MON vuông tại O có đường cao OP nên

OP2 = MP. NP (1)

* Theo tính chất hai tiếp tuyến cắt nhau ta có

MA= MP và NB = NP (2)

Từ (1) và (2) suy ra: OP2 = MA. NB hay R2 = MA. NB ( đpcm)

c) * Theo a, ∆MON và APB đồng dạng với nhau với tỉ số đồng dạng là:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Nửa hình tròn APB quay quanh AB tạo ta hình cầu có bán kính R.

nên thể tích khối cầu tạo ra là: Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

27 tháng 1 2019

a, Sử dụng các tứ giác nội tiếp chứng minh được  P M O ^ = P A O ^  và  P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)

b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB

Mặt khác MP.NP = P O 2  và PO = R Þ AM.BN = R 2  (ĐPCM)

c, Ta có  A M = R 2 => M P = R 2

Mặt khác  A M = R 2 => BN = 2R => PN = 2R

Từ đó tìm được MN =  5 R 2

DMON và DAPB đồng dạng nên  S M O N S A P B = M N A B 2 = 25 16

d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R

Thể tích hình cầu đó là V =  4 3 πR 3 (đvdt)