Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có Co là phân giác của góc AOM,OD ,là phân giác cảu góc BOM =>COM+DOM=1/2(AOM+BOM)=1/2*180=90
b) ta có M thuộc (O mà AB là đường kính => AMB là tam giác vuông=> góc AMB vuông;DM=DB,OM=OB=> Od là đường trung trực của MB => OD vuông góc Mb => góc MKO =90
c) Vì OM vuông góc với CD, áp dụng hệ thức lượng cho tam giác COD(call of duty)=> CM*MD=MO^2
mà CA=CM,MD=DB(TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU) =>CA*BD=OM^2 mà OM=AB/2 =>AC*BD=(AB^2)/4vì AB cố địnhnên h AC,BD không đổi
d)P là điểm nào
Bài làm:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi
~Học tốt!!~
Bài 1:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi
a, Vì CA = CM ( tc tiếp tuyến cắt nhau )
OA = OM = R
=> OC là đường trung trực đoạn AM
=> OC vuông AM
^AMB = 900 ( góc nội tiếp chắn nửa đường tròn )
=> AM vuông MB (1)
Ta có : DM = DB ( tc tiếp tuyến cắt nhau )
OM = OB = R
=> OD là đường trung trực đoạn MB
=> OD vuông MB (2)
Từ (1) ; (2) => OD // AM
b, OD giao MB = {T}
OC giao AM = {U}
Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900
=> tứ giác OUMT là hcn => ^UOT = 900
Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900
Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau )
CM = AC ( tc tiếp tuyến cắt nhau )
Xét tam giác COD vuông tại O, đường cao OM
Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD
c, Gọi I là trung điểm CD
O là trung điểm AB
khi đó OI là đường trung bình hình thang BDAC
=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB
Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R
Vậy AB là tiếp tuyến đường tròn (I;CD/2)
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN//AC//BD
a,i, Sử dụng tính chất hai tiếp tuyến cắt nhau có CA = CM và DM = DB nên AC + BD = CM + DM = CD
ii, C O D ^ = C O M ^ + M O D ^ = 1 2 A O M ^ + M O B ^ = 1 2 A O B ^ = 90 0
iii, ∆COA:∆ODB (g.g) => AC.BD = OA.OB = A B 2 4
b, với OC = 2R, OM = r, chứng minh được M C O ^ = 30 0
=> M O C ^ = 60 0 . Từ đó tính được EM = OM.sin 60 0 = R 3 2
OE = OM.cos 60 0 = R 2 ; Sxq = 2π.ME.OE = πR 2 3 2 (đvdt)
Và V = π M E 2 . O E = 3 πR 3 8 (ĐVTT)
a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ
- \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\) ( TÍCH CHẤT
- \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\) 2 TIẾP TUYẾN
- \(AC=CM\) CẮT NHAU )
\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)
C/M TƯƠNG TỰ TA CÓ \(\widehat{MOD}=\widehat{BOD}\)
+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)
\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)
\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
HAY \(\widehat{COD}=90^0\)
VẬY \(\widehat{COD}=90^0\)
B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )
\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O
MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )
\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)
\(\Rightarrow OI\perp AM\)TẠI \(I\)
\(\Rightarrow\widehat{MIO}=90^0\)
C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)
\(\Rightarrow\widehat{OKM}=90^0\)
THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)
XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT
VẬY T/G \(OIMK\)LÀ HCN
C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)
TƯƠNG TỰ \(MD=BD\)
KHI ĐÓ: \(AC.BD\)
\(=CM.MD\)
+ \(OM\perp CM\)( \(CM\)LÀ TIẾP TUYẾN TẠI M )
ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ
\(CM.MD=MO^2\)
\(\Rightarrow CM.MD=R^2\) ( VÌ \(MO\)LÀ BÁN KÍNH)
HAY \(AC.BD=R^2\) MÀ \(R\)KHÔNG ĐỔI
\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)
D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)
\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )
\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)
\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB )
\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG
XÉT HÌNH THANG \(ACDB\)
CÓ \(CI=DI\)
\(AO=OB\)
\(\Rightarrow OI\)SONG SONG \(AC\)
MÀ \(AC\perp AB\)
\(\Rightarrow OI\perp AB\) ( 1 )
+ \(MC=MD=\frac{1}{2}CD\)
XÉT \(\Delta\)VUÔNG \(COD\)CÓ \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)
VÀ \(OI=\frac{1}{2}CD\)
\(\Rightarrow OM=MC=MD\)
\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)
\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\) ( 2 )
TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD