K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2023

a) Ta có : \(\hat{A}=90^o\) (góc nội tiếp chắn nửa đường tròn (O), đường kính BC).

\(\hat{E}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

\(\hat{F}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

Suy ra, AHEF là hình chữ nhật (dấu hiệu nhận biết) (điều phải chứng minh).

b) Ta có : \(\hat{HAC}+\hat{C}=90^o\) (hai góc phụ nhau) và \(\hat{ABC}+\hat{C}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{HAC}=\hat{ABC}\) (điều phải chứng minh).

Mặt khác : \(\hat{AEF}=\hat{AHF}\) (hai góc nội tiếp đường tròn (I) cùng chắn cung AF).

Và : \(\left\{{}\begin{matrix}\hat{AHF}+\hat{HAC}=90^o\\\hat{C}+\hat{HAC}=90^o\end{matrix}\right.\Rightarrow\hat{AHF}=\hat{C}\). Suy ra : \(\hat{AEF}=\hat{C}\).

Lại có : \(\hat{AEF}+\hat{BEF}=180^o\) (hai góc kề bù) \(\Rightarrow\hat{C}+\hat{BEF}=180^o\).

Mà trong tứ giác BEFC, hai góc trên lại đối nhau. Do đó, tứ giác BEFC nội tiếp được một đường tròn (điều phải chứng minh).

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

25 tháng 7 2021

a) Vì AH là đường kính \(\Rightarrow\angle AEH=\angle AFH=90\)

Vì BC là đường kính \(\Rightarrow\angle BAC=90\Rightarrow\angle AEH=\angle AFH=\angle EAF=90\)

\(\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow\angle AEF=\angle AHF=\angle ACH\left(=90-\angle HAC\right)\)

\(\Rightarrow\angle AEF+\angle ABC=\angle ACH+\angle ABC=90\)

mà \(\angle ABC=\angle BAO\) (\(\Delta ABO\) cân tại O)

\(\Rightarrow\angle AEF+\angle BAO=90\Rightarrow EF\bot AO\)

c) EF cắt BC tại T'.T'A cắt (O) tại K'

Vì \(\angle AEF=\angle ACH\Rightarrow EFCB\) nội tiếp

Xét \(\Delta T'EB\) và \(\Delta T'CF:\) Ta có: \(\left\{{}\begin{matrix}\angle T'EB=\angle T'CF\\\angle FT'Cchung\end{matrix}\right.\)

\(\Rightarrow\Delta T'EB\sim\Delta T'CF\left(g-g\right)\Rightarrow\dfrac{T'E}{T'C}=\dfrac{T'B}{T'F}\Rightarrow T'E.T'F=T'B.T'C\)

Vì AK'BC nội tiếp \(\Rightarrow\angle T'K'B=\angle T'CA\)

Xét \(\Delta T'K'B\) và \(\Delta T'CA:\) Ta có: \(\left\{{}\begin{matrix}\angle T'K'B=\angle T'CA\\\angle AT'Cchung\end{matrix}\right.\)

\(\Rightarrow\Delta T'K'B\sim\Delta T'CA\left(g-g\right)\Rightarrow\dfrac{T'K'}{T'C}=\dfrac{T'B}{T'A}\Rightarrow T'K'.T'A=T'B.T'C\)

\(\Rightarrow T'K'.T'A=T'E.T'F\Rightarrow\dfrac{T'K'}{T'F}=\dfrac{T'E}{T'A}\)

Xét \(\Delta T'EK'\) và \(\Delta T'AF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{T'K'}{T'F}=\dfrac{T'E}{T'A}\\\angle FT'Achung\end{matrix}\right.\)

\(\Rightarrow\Delta T'EK'\sim\Delta T'AF\left(c-g-c\right)\Rightarrow\angle T'K'E=\angle T'FA\)

\(\Rightarrow AK'EF\) nội tiếp \(\Rightarrow K'\in\) đường tròn đường kính AH

\(\Rightarrow K'\equiv K\Rightarrow T'\equiv T\Rightarrow T,E,F\) thẳng hàng

undefined

 

25 tháng 7 2021

undefined

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

23 tháng 3 2016

a) Xét tam giác BEC

Ta có :

tam giác BEC nt (O)

BC đường kính

=> tam giác BEC vuông tại E

Xét tam giác BDC

Ta có :

tam giác BDC nt (o)

BC đường kính

=> tam giác BDC vuông tại D

Ta có:

góc BEC vuông tại E

góc BDC vuông tại D

Mà EC cắt DB tại H

=> H là trực tâm

=> AH vuông góc Với BC tại F

c) Xét tg BEHF

Ta có 

góc BEH= 90 độ

góc BFH = 90 độ

=> góc BEC + góc BDC = 90 độ + 90 độ = 180 độ

=>  tg BEHF nt(tổng 2 góc đối bằng 180 độ )

Ta có: B, E, D, F thuộc (O)

=> tg BEDF nt (O)

=> góc EBD = góc EFD ( 1 )

ta có: tg BEHF nt

=> góc EBH = góc EFH ( 2 )

từ (1) và (2)

=> góc EFD = góc EFH

=> AF // AF

23 tháng 8 2021

nt là j vậy

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi