K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

nên \(\widehat{AOM}=2\cdot\widehat{COM}\)

Xét (O) có

DB là tiếp tuyến có B là tiếp điểm(gt)

DM là tiếp tuyến có M là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)

nên \(\widehat{BOM}=2\cdot\widehat{DOM}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)

mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)

và \(\widehat{BOM}=2\cdot\widehat{DOM}\)(cmt)

nên \(2\cdot\widehat{DOM}+2\cdot\widehat{COM}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{DOM}+\widehat{COM}\right)=180^0\)

\(\Leftrightarrow\widehat{DOM}+\widehat{COM}=90^0\)

mà \(\widehat{DOM}+\widehat{COM}=\widehat{COD}\)(tia OM nằm giữa hai tia OC, OD)

nên \(\widehat{COD}=90^0\)

Vậy: \(\widehat{COD}=90^0\)

b) Gọi E là trung điểm của CD

Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét ΔCOD cân tại O(cmt) có OE là đường trung tuyến ứng với cạnh huyền CD(E là trung điểm của CD)

nên \(OE=\dfrac{CD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CE=ED=\dfrac{CD}{2}\)(E là trung điểm của CD)

nên EO=EC=ED

⇒O∈(E)

Ta có: AC⊥AB(AC là tiếp tuyến có A là tiếp điểm của (O))

BD⊥BA(BD là tiếp tuyến có B là tiếp điểm của (O))

Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)

Xét tứ giác ACDB có AC//DB(cmt)

nên ACDB là hình thang có hai đáy là AC và DB(Định nghĩa hình thang)

Xét (O) có AB là đường kính(gt)

nên O là trung điểm của AB

Xét hình thang ACDB(AC//DB) có 

E là trung điểm của CD(gt)

O là trung điểm của AB(cmt)

Do đó: OE là đường trung bình của hình thang ACDB(Định nghĩa đường trung bình của hình thang)

⇒OE//AC//DB và \(OE=\dfrac{AC+DB}{2}\)(Định lí 4 về đường trung bình của hình thang)

Ta có: OE//AC(cmt)

AC⊥AB(AC là tiếp tuyến có A là tiếp điểm của (O))

Do đó: OE⊥AB(Định lí 2 từ vuông góc tới song song)

mà O∈AB(O là trung điểm của AB)

nên OB⊥OE tại O

Xét (E) có 

O∈(E)(cmt)

OB⊥OE tại O(cmt)

Do đó: OB là tiếp tuyến của (E)(Dấu hiệu nhận biết tiếp tuyến của đường tròn)

⇔AB là tiếp tuyến của (E)

hay đường tròn đường kính CD tiếp xúc với AB(Đpcm)

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

6 tháng 8 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

 

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

16 tháng 2 2017

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

NV
8 tháng 5 2023

C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM

\(\Rightarrow E\) là trung điểm AM

Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM

\(\Rightarrow EF\) là đường trung bình tam giác ABM 

\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)

Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM 

\(\Rightarrow OF=\dfrac{1}{2}AM=AE\) 

Mà \(OF||AE\) (cùng vuông góc BM)

\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)

Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)

\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)

Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)

\(\Rightarrow ONEF\) là hình thang cân

NV
7 tháng 5 2023

loading...

9 tháng 10 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Gọi I là tâm của đường tròn đường kính CD.

Tứ giác CABD là hình thang vuông (AC ⊥ AB;BD ⊥ AB) có OI là đường trung bình

⇒ OI // AC ; mà AC ⊥ AB ⇒ OI ⊥ AB tại O

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy AB tiếp xúc với đường tròn đường kính CD.