Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O r H K
Từ O kẻ OH và OK vuông góc với BD . Nối OC , cắt AD tại K => OC vuông góc với AD (cung AC và CD bằng nhau)
Dễ thấy OHDK là hình chữ nhật => \(OK=DH=\frac{1}{2}BD=3\left(cm\right)\)
và \(DK=OH=\sqrt{OB^2-3^2}=\sqrt{r^2-9}\) (1)
Mặt khác, ta lại có \(KD=\sqrt{CD^2-KC^2}=\sqrt{20-\left(r-3\right)^2}\) (2)
Từ (1) và (2) ta có : \(\sqrt{r^2-9}=\sqrt{20-\left(r-3\right)^2}\Leftrightarrow\orbr{\begin{cases}r=5\left(n\right)\\r=-2\left(l\right)\end{cases}}\)
Vậy bán kính của dường tròn là 5 cm.
O A B D C
Ta có
\(CB^2=CD^2+DB^2-2.CD.DB.\cos\left(\widehat{CDB}\right)\)
\(=20+36-2.2\sqrt{5}.6.\cos\left(\pi-\widehat{CAB}\right)\)
\(=56+\frac{24\sqrt{5}.2\sqrt{5}}{2R}=56+\frac{120}{R}\left(1\right)\)
Ta lại có
\(CB^2+AC^2=AD^2+DB^2=4R^2\)
\(\Leftrightarrow56+\frac{120}{R}+20=4R^2\)
\(\Leftrightarrow4R^2-\frac{120}{R}-76=0\)
\(\Leftrightarrow R^3-19R-30=0\)
\(\Leftrightarrow\left(R-5\right)\left(R+2\right)\left(R+3\right)=0\)
\(\Leftrightarrow R=5\)
I A B O H D E C C'
- Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
- do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
- Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm