K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((

1 tháng 5 2023

△AMB nội tiếp đường tròn đường kính AB nên △AMB vuông tại M.

- Ta có: \(\widehat{CAB}+\widehat{DBA}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{CAM}+\widehat{MAB}+\widehat{DBM}+\widehat{MBA}=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+90^0=180^0\) nên \(\widehat{CAM}+\widehat{DBM}=90^0\)

Tứ giác ANMC có: \(\widehat{NAC}+\widehat{NMC}=90^0+90^0=180^0\)

Nên tứ giác ANMC nội tiếp \(\Rightarrow\widehat{CAM}=\widehat{CNM}\)

Tứ giác BNMD có: \(\widehat{NBD}+\widehat{NMD}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác BNMD nội tiếp \(\Rightarrow\widehat{MBD}=\widehat{MND}\)

\(\Rightarrow\widehat{CNM}+\widehat{MND}=\widehat{CAM}+\widehat{MBD}=90^0\)

\(\Rightarrow\widehat{INK}=90^0\).

Tứ giác MINK có: \(\widehat{IMK}+\widehat{INK}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác MINK nội tiếp nên \(\widehat{MIK}=\widehat{MNK}\)

Lại có \(\widehat{MNK}=\widehat{MBD}\left(cmt\right)\) \(\Rightarrow\widehat{MIK}=\widehat{MBD}\)

Xét (O): \(\widehat{MBD}=\widehat{MAB}\left(=\dfrac{1}{2}sđ\stackrel\frown{MB}\right)\)

\(\Rightarrow\widehat{MIK}=\widehat{MAB}\) nên IK//AB

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN

25 tháng 12 2014

trên CD lấy điểm N, kẻ MN vuông góc với CD

=> 2 tam giac vuông MBC=MNC

=> 2tam giác MAD=MND

=> MB=MN=MA = R

vậy CD là tiếp tuyến đường tròn tâm  M

 

18 tháng 5 2018

Ta có: \(OD//O'B\left(\perp AB\right)\)

\(\Rightarrow\frac{AO}{AO'}=\frac{OD}{O'B}=\frac{R}{R'}=\frac{OI}{O'M}=\frac{OI}{O'I}\)

 OI cắt O’I và A, I, M thẳng hàng ( gt ) nên suy ra OI // O’M \(\Rightarrow\widehat{DOI}=\widehat{BO'M}\)

Mà \(\widehat{BDI}=\frac{1}{2}\widehat{DOI}=\frac{1}{2}\)sđ cung DI và \(\widehat{BIM}=\frac{1}{2}\widehat{BO'M}=\frac{1}{2}\)sđ cung \(BM\Rightarrow\widehat{BDI}=\widehat{BIM}\)

Nên AM là tiếp tuyến của đường tròn ngoại tiếp của tam giác BDI ( đpcm )

18 tháng 5 2018

có vẽ hình ko ?