K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
12 tháng 3 2022

Cho đường tròn tâm OO đường kính MNMN và AA là một điểm trên đường tròn (O)(O), (AA khác MM và AA khác NN). Lấy một điểm II trên đoạn thẳng ONON (II khác OO và II khác NN). Qua II kẻ đường thẳng (d)(d) vuông góc với MNMN. Gọi PPQQ lần lượt là giao điểm của AMAMANAN với đường thẳng (d)(d). Gọi KK là điểm đối xứng của NN qua điểm II. Chứng minh góc PMK = IQN\widehat{PMK}=\widehat{IQN}
 và tứ giác MPQKMPQK nội tiếp đường tròn.

 Xét 2 tam giác AMN và IQN có :

góc A= goc QIN= 90 (gt)

=> goc M= IQN= 90 - goc N (đpcm)

Xet 2 tam giác IQK và IQN có: 

IQ chung

vì K là điểm đối xứng của NN qua điểm II

=> IK =IN

góc QIK = QIN=90 

=> 2 tam giác IQK = IQN (c.g.c)

=> góc IQK=IQN=PQA=PMK

trong đó  góc PQK + IQN = 180

=> góc PQK + PMK = 180

=> đpcm