K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

22 tháng 8 2021

Kẻ OI  AB ( I  CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=CA+DB2 =MC+MD2 =DC2  là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

22 tháng 8 2021

Kẻ OI \bot AB ( I \in CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2}IO=2CA+DB=2MC+MD=2DC là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

11 tháng 12 2021

a: Xét (O) có

DM là tiếp tuyến

DA là tiếp tuyến

Do đó: OD là tia phân giác của góc MOA(1)

Xét (O) có 

EM là tiếp tuyến

EB là tiếp tuyến

Do đó: OE là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔDOE vuông tại O

Chọn B

a: Xét tứ giác ADMO có

góc DAO+góc DMO=180 độ

nên ADMO là tứ giác nội tiếp

b: Gọi N là trung điểm của CD

Xét hình thang ABCD ccó

O,N lần lượt là trung điểm của AB,CD

nên ON là đường trung bình

=>ON//AD//BC

=>ON vuông góc với AB

=>AB là tiếp tuyến của (N)