K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Hình bạn tự vẽ nhé!

Gọi I là trung điểm của DE.

Từ I dựng IH vuông góc với AB tại H.

Ta có: Ax//By

=> Tứ giác ABED là hình thang.

và ID = IE (I là trung điểm của DE)

    OA = OB (O là tâm của đường tròn đường kính AB)

=> OI là đường trung bình của hinh thang ABED

=> OI//AD

=> SAOI = SDOI 

=> 1/2.OA.IH = 1/2.DI.OC

Mà OI = OC 

=> IH = DI = IE

Mà IH vuông góc với AB (cách lấy điểm H)

=> AB là tiếp tuyens của đường tròn đường kính DE.

14 tháng 8 2022

tại sao SAOI = SDOI Vậy ạ?

22 tháng 8 2021

Kẻ OI  AB ( I  CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=CA+DB2 =MC+MD2 =DC2  là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

22 tháng 8 2021

Kẻ OI \bot AB ( I \in CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2}IO=2CA+DB=2MC+MD=2DC là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

6 tháng 8 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

 

16 tháng 2 2017

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi