Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A D G E F H M O N P S T
1) +) Xét đường tròn (AD): ^AED = ^AFD = 900 (Các góc nội tiếp chắn nửa đường tròn)
Áp dụng hệ thức lượng trong tam giác vuông: BD2 = BE.BA; CD2 = CF.CA => (BD.CD)2 = AB.AC.BE.CF
Hay AD4 = AD.BC.BE.CF => AD3 = BC.BE.CF => \(\frac{AD^3}{BE.CF}=BC=2R\)
+) Chứng minh H,E,F thẳng hàng ?
Ta có: AE.AB = AF.AC (=AD2) => Tứ giác BEFC nội tiếp => ^CBE = ^AFE = ^EGH (Do tứ giác AGEF nội tiếp)
=> Tứ giác BEGH nội tiếp => ^GEH = ^GBH = ^GAF. Mà ^GAF + ^GEF = 1800
Nên ^GEH + ^GEF = 1800 => 3 điểm H,E,F thẳng hàng (đpcm).
2) Ta thấy tứ giác BEGH và BEFC nội tiếp => AG.AH = AE.AB = AF.AC => Tứ giác GFCH nội tiếp
Theo ĐL Ptolemy cho tứ giác GFCH nội tiếp: FG.CH + GH.CF = CG.HF (đpcm).
3) Gọi S,T lần lượt là hình chiếu của N,P trên BC.
Xét đường tròn (P) có: ^ACM = 1/2.Sđ(AM = 900 - ^PMA => ^PMA = 900 - ^ACB.
Tương tự: ^NMA = 900 - ^ABC. Suy ra: ^PMA + ^NMA = 1800 - (^ABC + ^ACB) = 900 => ^PMN = 900
Từu đó dễ có: \(\Delta\)NSM ~ \(\Delta\)MTP (g.g) => NS.PT = MS.MT (*)
Xét \(\Delta\)MNP: ^PMN = 900 => \(S_{MNP}=\frac{MN.MP}{2}=\frac{\sqrt{\left(NS^2+MS^2\right)\left(PT^2+MT^2\right)}}{2}\)(ĐL Pytagore)
Áp dụng BĐT Bunhiacopsky: \(S_{MNP}\ge\frac{NS.PT+MS.MT}{2}=MS.MT=\frac{1}{4}BM.CM\)(Dựa vào (*) )
Vậy Min SMNP = 1/4.BM.CM = const (Vì M cố định). Đạt được khi A là trung điểm cung BC.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.