Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ADB=1/2*180=90 độ
góc EOB+góc EDB=180 độ
=>EOBD nội tiếp
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC^2=AE*AD
c: góc EIB=góc EDB=90 độ
=>EIDB nội tiếp
=>góc IED=góc IBD; góc IDE=góc IBE
góc IBE+góc OBE=góc IBO=45 độ
ΔEAB cân tại E
=>góc EAB=góc EBA
=>góc IBE+góc EAB=45 độ
góc IDE=góc IBE
=>góc IDE+1/2*sđ cung BD=45 độ
1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB
=>góc IED+1/2*sđ cung BD=45 độ
=>góc IDE=góc IED
=>ID=IE
góc ICE=45 độ; góc EIC=90 độ
=>ΔEIC vuôngcân tại I
=>IE=IC=ID
=>ĐPCM
A B O M N C K I E H
a) Vì MN vuông góc với AB nên cung AM = cung AN suy ra góc AKM = góc AMN nên tam giác AEM đồng dạng với tam giác AMK suy ra \(\frac{AM}{AK}=\frac{AE}{AM}\Rightarrow AE.AK=AM^2\)
...
1: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn
2: Kẻ tiếp tuyến Ax tại A của (O)
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn cung BA
Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)
Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AHF}\)
mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)
nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//EF
Ta có: Ax//EF
OA\(\perp\)Ax
Do đó: OA\(\perp\)EF