K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADB=1/2*180=90 độ

góc EOB+góc EDB=180 độ

=>EOBD nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD

c: góc EIB=góc EDB=90 độ

=>EIDB nội tiếp

=>góc IED=góc IBD; góc IDE=góc IBE

góc IBE+góc OBE=góc IBO=45 độ

ΔEAB cân tại E 

=>góc EAB=góc EBA

=>góc IBE+góc EAB=45 độ

góc IDE=góc IBE

=>góc IDE+1/2*sđ cung BD=45 độ

1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB

=>góc IED+1/2*sđ cung BD=45 độ

=>góc IDE=góc IED

=>ID=IE

góc ICE=45 độ; góc EIC=90 độ

=>ΔEIC vuôngcân tại I

=>IE=IC=ID

=>ĐPCM

30 tháng 5 2017

A B O M N C K I E H

a) Vì MN vuông góc với AB nên cung AM = cung AN suy ra góc AKM = góc AMN nên tam giác AEM đồng dạng với tam giác AMK suy ra \(\frac{AM}{AK}=\frac{AE}{AM}\Rightarrow AE.AK=AM^2\)

 ...

15 tháng 12 2023

1: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax tại A của (O)

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

Xét (O) có

\(\widehat{ACB}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AHF}\)

mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//EF

Ta có: Ax//EF

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF

21 tháng 1 2018
Mình gợi ý bạn theo đó làm nha. 1. bạn gọi giao điểm của OA là K. Xét 2 tam giác vuông AOB và AOC có trung tuyến ứng với cạnh huyền nên bằng 1/2 cạnh đó. từ đó suy ra KO=KB=KC=KA. nên 4 điểm đó thuộc 1 đường tròn 2. Gọi giao điểm của OA và BC là M. cm M là trung điểm của BC rồi tính BM từ đó tính được AB theo hệ thức lượng trong tg vuông rồi tính OA theo định lí Pytago 3. bạn c/m BH//AC =>góc HBC= góc BCA. Mà góc BCA =góc CBA(tự cm) =>góc HBC = góc CBA. nên BC là tia pg