K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 4 2022
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Ta có: CM+DM=CD
nên CD=CA+DB
b: Từ (1) và (2) suy ra \(\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=90^0\)
=>\(\widehat{COD}=90^0\)
hay ΔCOD vuông tại O
ta có tam giác ACDB có GTNN khi ACDB là hình chữ nhật
nối O với M . DỄ CHỨNG MINH ĐƯỢC ACMO VÀ OMDB LÀ HÌNH VUÔNG CẠNH R
suy ra diện tích ACM=1/2*AC*CM=1/2*AO*OM=1/2*R*R=\(\frac{R^2}{2}\)
TƯƠNG TỰ diện tích BDM=\(\frac{R^2}{2}\)
SUY RA TỔNG DIỆN TÍCH 2 TAM GIÁC LÀ \(\frac{R^2}{2}+\frac{R^2}{2}=\frac{2R^2}{2}=R^2\)
TICK NHA