Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O E F K M
a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn
=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK
Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK
Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn
=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD
Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC
Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)
=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).
Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC
Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)
=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn
=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)
Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC) (2)
Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)
Nên ^BAC + ^BDC + ^BMC = 1800 (3)
Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800
=> Tứ giác BKCM nội tiếp đường tròn (đpcm).
b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)
Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)
Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)
=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)
Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB
Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB
Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)
Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)
Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).
1. ta có: góc MAC = 900 (MA vuong góc AC)
góc MDC = 900 (MD vuong góc DC)
xét tứ giác ACDM co:
Góc MAC + góc MDC =90+90= 1800
tứ giác ACDM nội tiếp đường tròn ( tổng 2 góc đối bằng 1800)
2. ta có: góc ADB = 90 (góc nội tiếp chắn nửa đường tròn)
tam giác ADM vuông tại D
Góc DAB + DBA = 90
góc MAB = CMD ( 2 góc nội tiếp chắn nửa đường tròn)
góc DBA = DNC ( 2 góc nội tiếp chắn nửa đường tròn)
Góc CMD + góc DNC = 900
góc MNC = 900 Tam giác MNC vuông tại N