K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 5 2023
a: góc OAC+góc OMC=180 độ
=>OACM nội tiếp
b: OACM nội tiếp
=>góc CAM=góc COM=góc DOM=góc ODM
10 tháng 1 2022
a: Xét tứ giác ACMO có
\(\widehat{CAO}+\widehat{CMO}=180^0\)
Do đó: ACMO là tứ giác nội tiếp
b:
Xét tứ giác DMOB có
\(\widehat{DMO}+\widehat{DBO}=180^0\)
Do đó: DMOB là tứ giác nội tiếp
Suy ra: \(\widehat{ODM}=\widehat{OBM}\)
mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)
nên \(\widehat{CAM}=\widehat{ODM}\)
Lời giải:
Bạn tự vẽ hình giúp mình nhé.
a) Vì $CA,CM$ là tiếp tuyến của $(O)$ nên \(CA\perp OA, CM\perp OM\) (theo tính chất tiếp tuyến)
\(\Rightarrow \widehat{CAO}=\widehat{CMO}=90^0\)
Tứ giác $ACMO$ có tổng hai góc đối \(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\) nên là tứ giác nội tiếp.
b)
Có: \(\widehat{CAM}=\widehat{ABM}=\widehat{OBM}\) (góc tạo bởi tia tiếp tuyến và dây cung AM và góc nội tiếp cùng chắn cung AM thì bằng nhau)
Hoàn toàn tt ta cũng chỉ ra được $BDMO$ nội tiếp
\(\Rightarrow \widehat{ODM}=\widehat{OBM}\)
Do đó: \(\widehat{CAM}=\widehat{ODM}\)
c)
Xét tam giác $POM$ và $PCA$ có:
\(\left\{\begin{matrix} \widehat{P}-\text{chung}\\ \widehat{PMO}=\widehat{PAC}=90^0\end{matrix}\right.\) \(\Rightarrow \triangle POM\sim \triangle PCA(g.g)\)
\(\Rightarrow \frac{PO}{PC}=\frac{PM}{PA}\Rightarrow PO.PA=PC.PM\)
Ta có đpcm.