K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: OACM nội tiếp

=>góc CAM=góc COM=góc DOM=góc ODM

 

a: Xét tứ giác ACMO có 

\(\widehat{CAO}+\widehat{CMO}=180^0\)

Do đó: ACMO là tứ giác nội tiếp

b:

Xét tứ giác DMOB có 

\(\widehat{DMO}+\widehat{DBO}=180^0\)

Do đó: DMOB là tứ giác nội tiếp

Suy ra: \(\widehat{ODM}=\widehat{OBM}\)

mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)

nên \(\widehat{CAM}=\widehat{ODM}\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Bạn tự vẽ hình giúp mình nhé.

a) Vì $CA,CM$ là tiếp tuyến của $(O)$ nên \(CA\perp OA, CM\perp OM\) (theo tính chất tiếp tuyến)

\(\Rightarrow \widehat{CAO}=\widehat{CMO}=90^0\)

Tứ giác $ACMO$ có tổng hai góc đối \(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\) nên là tứ giác nội tiếp.

b)

Có: \(\widehat{CAM}=\widehat{ABM}=\widehat{OBM}\) (góc tạo bởi tia tiếp tuyến và dây cung AM và góc nội tiếp cùng chắn cung AM thì bằng nhau)

Hoàn toàn tt ta cũng chỉ ra được $BDMO$ nội tiếp

\(\Rightarrow \widehat{ODM}=\widehat{OBM}\)

Do đó: \(\widehat{CAM}=\widehat{ODM}\)

c)

Xét tam giác $POM$ và $PCA$ có:

\(\left\{\begin{matrix} \widehat{P}-\text{chung}\\ \widehat{PMO}=\widehat{PAC}=90^0\end{matrix}\right.\) \(\Rightarrow \triangle POM\sim \triangle PCA(g.g)\)

\(\Rightarrow \frac{PO}{PC}=\frac{PM}{PA}\Rightarrow PO.PA=PC.PM\)

Ta có đpcm.

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0