K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

Bạn ấn vào đây nha

26 tháng 11 2016

làm gì có đâu

20 tháng 11 2017

Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa

a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường  tròn) ⇒ˆADM=900⇒ADM^=900 (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC

⇒ˆAEM=900⇒AEM^=900 (2). 

Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.

b)  Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)

Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).

Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^

c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).

Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).

Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.

5 tháng 3 2023

Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.

Bước 1: Chứng minh AD/AC + AM/AN = 3.

Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:

 

$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$

Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$

Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.

Thay vào phương trình trên, ta được:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$

Tương đương với:

 

$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$

Từ đó suy ra:

 

$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$

Do đó:

 

$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.