Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)
\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)
\(\Leftrightarrow n^2+3n-2548=0\)
\(\Rightarrow n=49\)
Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\) ta có:
Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
1/ b) Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3=6x+4\)
Ta có hệ: \(\left\{{}\begin{matrix}x^3=6a+4\\a^3=6x+4\end{matrix}\right.\)
Lấy pt trên trừ pt dưới vế với vế, suy ra:
\(\left(x-a\right)\left(x^2+ax+a^2+6\right)=0\)
\(\Leftrightarrow x=a\Leftrightarrow x^3-6x-4=0\Leftrightarrow\left(x+2\right)\left(x^2-2x-2\right)=0\)
Vừa post xong
Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\) là tích \(n\) số nguyên dương đầu tiên. Khi đó ta sẽ có
Tử số bằng \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)
Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).
Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).
Cuối cùng ta có \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)
ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.
Vì n nguyên tố >= 5 nên n không chia hết cho 3 => 4n không chia hết cho 3
Vì 2n+1 nguyên tố nên 2n+1 không chia hết cho 3 => 2(2n+1) không chia hết cho 3 => 4n+2 không chia hết cho 3
Vì 4n, 4n+1, 4n+2 là 3 số tự nhiên liên tiếp
nên phải có 1 số chia hết cho 3
mà 4n và 4n+2 không chia hết cho 3
nên 4n+1 chia hết cho 3
mà 4n+1>3
do đó 4n+1 là hợp số
N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)
4N = n(n+1)(n+2)(n+3)
4N + 1 = ( n2 + 3n + 1)2 ( đpcm )