K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CB\(\perp\)CA tại C

=>CB là tiếp tuyến của (A;AC)

Xét (A;AC) có

\(\widehat{BCE}\) là góc tạo bởi tiếp tuyến CB và dây cung CE)

\(\widehat{CDE}\) là góc nội tiếp chắn cung CE

Do đó: \(\widehat{BCE}=\widehat{CDE}\)

Xét (O) có

\(\widehat{CBE}\) là góc nội tiếp chắn cung CN

\(\widehat{CDN}\) là góc nội tiếp chắn cung CN

Do đó: \(\widehat{CBE}=\widehat{CDN}\)

mà \(\widehat{BCE}=\widehat{CDE}\)

nên \(\widehat{CBE}+\widehat{BCE}=\widehat{CDN}+\widehat{CDE}=\widehat{NDE}\left(1\right)\)

Xét ΔCEB có \(\widehat{CEN}\) là góc ngoài tại đỉnh E

nên \(\widehat{CEN}=\widehat{CBE}+\widehat{BCE}\left(2\right)\)

Từ(1) và (2) suy ra \(\widehat{CEN}=\widehat{NDE}\)

AC=AD

=>A nằm trên đường trung trực của CD(3)

OC=OD

=>O nằm trên đường trung trực của CD(4)

Từ (3) và (4) suy ra OA là đường trung trực của CD

=>BA là đường trung trực của CD

=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Xét (O) có

\(\widehat{BNC}\) là góc nội tiếp chắn cung BC

\(\widehat{BND}\) là góc nội tiếp chắn cung BD

\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Do đó: \(\widehat{BNC}=\widehat{BND}\)

Xét ΔCEN và ΔEDN có

\(\widehat{CEN}=\widehat{EDN}\)

\(\widehat{CNE}=\widehat{END}\)

Do đó: ΔCEN đồng dạng với ΔEDN

=>\(\dfrac{NC}{NE}=\dfrac{NE}{ND}\)

=>\(NE^2=NC\cdot ND\)

14 tháng 3 2016

hon ma bay ma cung biet dua cau hoi day

29 tháng 3 2018

dam nhau a minh anh can het

2 tháng 4 2018

kết qủa là gì

5 tháng 4 2020

a) Vì MC là đường kính (O) mà \(N\in\left(O\right)\)

\(\Rightarrow\widehat{MNC}=90^o\).Lại có \(\widehat{BAC}=90^o\)

=> B,A,N,C cùng thuộc 1 đường tròn

=> Tứ giác BANC nội tiếp

20 tháng 1 2016

oài 3 bài này khó kinh khủng