Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)CA tại C
=>CB là tiếp tuyến của (A;AC)
Xét (A;AC) có
\(\widehat{BCE}\) là góc tạo bởi tiếp tuyến CB và dây cung CE)
\(\widehat{CDE}\) là góc nội tiếp chắn cung CE
Do đó: \(\widehat{BCE}=\widehat{CDE}\)
Xét (O) có
\(\widehat{CBE}\) là góc nội tiếp chắn cung CN
\(\widehat{CDN}\) là góc nội tiếp chắn cung CN
Do đó: \(\widehat{CBE}=\widehat{CDN}\)
mà \(\widehat{BCE}=\widehat{CDE}\)
nên \(\widehat{CBE}+\widehat{BCE}=\widehat{CDN}+\widehat{CDE}=\widehat{NDE}\left(1\right)\)
Xét ΔCEB có \(\widehat{CEN}\) là góc ngoài tại đỉnh E
nên \(\widehat{CEN}=\widehat{CBE}+\widehat{BCE}\left(2\right)\)
Từ(1) và (2) suy ra \(\widehat{CEN}=\widehat{NDE}\)
AC=AD
=>A nằm trên đường trung trực của CD(3)
OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3) và (4) suy ra OA là đường trung trực của CD
=>BA là đường trung trực của CD
=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Xét (O) có
\(\widehat{BNC}\) là góc nội tiếp chắn cung BC
\(\widehat{BND}\) là góc nội tiếp chắn cung BD
\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Do đó: \(\widehat{BNC}=\widehat{BND}\)
Xét ΔCEN và ΔEDN có
\(\widehat{CEN}=\widehat{EDN}\)
\(\widehat{CNE}=\widehat{END}\)
Do đó: ΔCEN đồng dạng với ΔEDN
=>\(\dfrac{NC}{NE}=\dfrac{NE}{ND}\)
=>\(NE^2=NC\cdot ND\)
a) Vì MC là đường kính (O) mà \(N\in\left(O\right)\)
\(\Rightarrow\widehat{MNC}=90^o\).Lại có \(\widehat{BAC}=90^o\)
=> B,A,N,C cùng thuộc 1 đường tròn
=> Tứ giác BANC nội tiếp