Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để N là số nguyên thì \(\frac{9}{\sqrt{x}-5}\in Z\)
\(\Rightarrow\text{ }9\text{ }⋮\text{ }\sqrt{x}-5\)
\(\Rightarrow\text{ }\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{x}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(x\) | 36 | 16 | 64 | 4 | 196 | không tồn tại |
\(\frac{x+3}{x-2}=\frac{\left(x-2\right)+5}{x-2}=\frac{x-2}{x-2}+\frac{5}{x-2}=1+\frac{5}{x-2}\)
hàm số f(x) có giá trị ngyên \(\Leftrightarrow\) 5 \(⋮\)x-2
hay x-2 là các ước của 5
nên x-2\(\in\){-5;-1;1;5}
Vậy x\(\in\){-3;1;3;7}
Đó là đáp số cho bài toán của bạn
\(A=\frac{4\sqrt{x}+11}{4\sqrt{x}+3}=1+\frac{8}{4\sqrt{x}+3}\)(x khác 0)
Để A nguyên thì \(\frac{8}{4\sqrt{x}+3}\)nguyên
\(\Leftrightarrow8⋮\left(4\sqrt{x}+3\right)\)
Mà \(4\sqrt{x}+3\)lẻ nên \(4\sqrt{x}+3\in\left\{\pm1\right\}\)
Mà \(4\sqrt{x}+3\ge3\)nên không có x thỏa mãn để A nguyên
ĐK : \(x\ge0\)
\(\frac{4\sqrt{x}+11}{4\sqrt{x}+3}=\frac{4\sqrt{x}+3+8}{4\sqrt{x}+3}\)\(=1+\frac{8}{4\sqrt{x}+3}\)
Để \(\frac{4\sqrt{x}+11}{4\sqrt{x}+3}\)nguyên \(\Leftrightarrow1+\frac{8}{4\sqrt{x}+3}\)nguyên
\(\Leftrightarrow\frac{8}{4\sqrt{x}+3}\) nguyên
\(\Leftrightarrow8⋮\left(4\sqrt{x}+3\right)\)
\(\Leftrightarrow4\sqrt{x}+3\inƯ\left(8\right)\)
\(\Leftrightarrow4\sqrt{x}+3\in\left\{1,2,4,8,-1,-2,-4,-8\right\}\)
\(\Leftrightarrow4\sqrt{x}\in\left\{-2,-1,1,5,-4,-5,-7,-11\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-\frac{1}{2},-\frac{1}{4},\frac{1}{4},-1,-\frac{5}{4},-\frac{7}{4},-\frac{11}{4}\right\}\)
mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
cho biểu thức E=5-x/x-2.Tìm các giá trị nguyên của x để
a]E có giá trị nguyên
b e có gias
trij nhỏ nhất
N = 9/ x^2 - 5
x^2 - 5 { 1 ; 9 ; -1 ; -9 }
Xét x^2 - 5 = 1
=> x^2 = 6 ( loại )
Xét x^n - 5 = 9
=> x^2 = 14 ( loại )
Xét x^2 - 5 = -1
=> x^2 = 4
x^2 = 2^2
=> x = 2
Xét x^2 - 5 = -9
=> x^2 = -4 ( loại )
Vậy muốn N nguyên , x = 2