Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
nhớ chọn câu trả lời của mình nhe
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)
= n2(n + 1).(n3 - n2 + 2) = n2(n + 1).(n3 + 1 + 1 - n2) = n2(n + 1).(n +1). (n2 - n + 1 - n + 1) = n2( n + 1)2.(n2 - 2n + 2)
Với n > 1 => n2 - 2n + 1 < n2 - 2n + 2 < n2
=> (n - 1)2 < n2 - 2n + 2 < n2
(n - 1)2 ; n2 là 2 số chính phương liên tiếp => n2 - 2n + 2 không thể là số chính phương
=> A không là số chính phương
A>0 vì n thuộc N
giả sử A là số nguyên tố thì A chỉ có uoc là +-1 và +-A vậy (-1).1(-A).A =A2
Nếu A là hợp số thì A sẽ phân tích thành tích các thừa số nguyên tố. tich các ước của 1 số nguyên tố là 1 số chính phương, tích các số chính phương là 1 số chihs phương.
Vậy Tích tất cả các ước của A>o bất kì đều là số chính phương.
Giả sử cả 2 số đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 2n + 1 + 1 - (22n + 1 - 2n + 1 + 1) = 2.2n+1 chia hết cho 5
=> 2n+2 chia hết cho 5 . Điều này không xảy ra vì 2n+2 không tận cùng bằng 0 ; 5
=> Phải có ít nhất a hoặc b không chia hết cho 5
a = 22n+1 + 2n+1 + 1 = (22)n.21 + 2n.21 + 1 = 4n.2 + 2n.2 + 1 = 2.(4n.2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) + 1 là số lẻ mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 , do đó a không chia hết cho 5.
b = 22n+1 - 2n+1 + 1 = (22)n.21 - 2n.21 + 1 = 4n.2 - 2n.2 + 1 = 2.(4n-2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) - 1 là số lẻ, mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 do đó b không chia hết cho 5.
Suy ra điều phải chứng minh