Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là UCLN(14n+3;21n+4)
ta có:
3(14n+3)-2(21n+4) chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ps trên tối giản
goỊ Đ LÀ ƯC(21N+4/14N+3
=>14N+3 CHIA HẾT CHO Đ=>3(14N+12)CHIA HẾT CHO Đ
=>21N+4 CHIA HẾT CHO Đ=>2(21+8) CHI HẾT CHO Đ
=>42N+12 -42N+8 CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ =>Đ=1
VÌ 12N+4/14N+3 CÓ ƯC =1
=>21N+4/14N+3 LÀ PHÂN SỐ TỐI GIẢN
Gọi ƯCLN (14n + 3 ; 21n + 5) = d
=> 14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d
21n + 5 chia hết cho d => 2(21n + 5) chia hết cho d
=>2(21n + 5) - 3(14n + 3) chia hết cho d
=> (42n + 10) - (42n + 9) chia hết cho d
=> d = ±1
=> \(\frac{14n+3}{21n+5}\) là phân số tối giản
Các bạn xem mình làm có đúng không ??
Đặt d = ƯCLN ( 14n + 3,21n + 5 ) ( d ∈ ℕ* )
Ta có : 14 n + 3 ⋮ d và 21n + 5 ⋮ d
⇒ 3( 14n + 3 ) ⋮ và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d
⇒ (42n + 10) - (42n + 9) ⋮ d ⇒ 1 ⋮ d . Do đó : d = 1
Vậy phân số trên là phân số tối giản
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
Gọi \(d\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(42n+9\right)⋮d\\\left(42n+10\right)⋮d\end{cases}}\)
\(\Rightarrow\left(42n+10\right)-\left(42+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1\right\}\)
\(\Rightarrow1\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\frac{14n+3}{21n+5}\)là phân số tối giản