Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n(n+1)+1
n(n+1) luôn chia hết cho 2
n(n+1) không chia hết cho với n khác 5
Do đó A ko chia hết cho 2 và 5
dễ mà :
a . A = n^2 + n + n = n ( n + 1 ) + 1
n , n + 1 là hai số tự nhiên liến tiếp => n ( n + 1 ) là số chẵn
=> n ( n + 1 ) + 1 là số lẻ
=> A không chia hết cho 2
b . Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn
=>A=n2+n+1 là số lẽ không chia hết cho 2
*khi n là số chẳn=> n2 là số chẳn ; n+1 là số lẻ
=>A=n2+n+1 là số lẻ không chia hết cho 2
Vậy A không chia hết cho 2
b)Ta có A=n2+n+1=n.(n+1)+1
Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:
=>n.(n+1) có thể tận cùng là 0;2;4;6;8
Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5
Với n.(n+1)=4
Ta lại có : 4=1.4=4.1=2.2
=>n.(n+1) khác 4
Vậy A không chia hết cho 5
giả sử n chia hết cho 5
=>n có dạng 5k
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)
a)tr hp 1 : n : số lẻ
n2 : số lẻ
n2+n : số chẵn
n2+n+1 : số lẻ
tr hp 2 : n : số chẵn
n2 : số chẵn
n2+n : số chẵn
n2+n+1 : số lẻ
=> ko chia hết cho 2
Chứng minh k chia hết cho 4:
Ta có:n^2+n+1=n(n+1)+1
n(n+1) là tích của 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2. Mà 1 không chia hết cho 2
=n(n+1)+1 không chia hết cho 2
Suy ra: n(n+1)+1 không chia hết cho 4
Hoặc n^2+n+1 không chia hết cho 4
Chứng minh không chia hết cho 5:
Ta có: n^2+n+1=n(n+1)+1
n+(n+1) là tích của số tự nhiên liên tiếp nên có chữ số tận cùng là: 0;2;6
Suy ra: n(n+1)+1 có chữ số tận cùng là:1;3;7
Mà các chữ số tận cùng khác 0 hoặc 5 thì k chia hết cho 5
Vậy n(n+1)+1 không chia hết cho 5
Hay:n^2+n+1 không chia hết cho 5
Đặt A = n^2+n+2
Có : A = n^2+n+1 = (n^2+n) + 1 = n.(n+1)+1
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1) chia hết cho 2
=> n.(n+1)+1 ko chia hết cho 2 nên n.(n+1)+1 ko chia hết cho 4