\(99...9400...09\). Tính \(\sqrt{N}\)( Tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Tất cả những vấn đề em hỏi đều thuộc lý thuyết phân tích cấu tạo số cơ bản. Tất nhiên, lời giải sẽ có 1 chút tắt (không đáng kể). 

Tip: Em chịu khó viết ra nháp từng bước một và đọc kỹ. Nếu thấy số dài mà không hiểu vì sao người ta làm vậy, em thử với bộ số nhỏ hơn có phong cách tương tự (ví dụ 994009)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

\(\underbrace{999....9}_{10} 4\underbrace{000..0}_{10}9=\underbrace{999....9}_{10} 4\underbrace{00...0}_{11}+9\)

\(=\underbrace{999....9}_{10}4\times 1\underbrace{00...0}_{11}+9\)

\(=(\underbrace{999....9}_{10}7-3)\times (\underbrace{99....9}_{10}7+3)-9\) 

(em tưởng tượng 1000 có 3 chữ số 0 đằng sau, biểu diễn được thành 997+3 có 3-1=2 chữ số 9)

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Đơn giản là em đang xem một lời giải sai. Việc khẳng định $P\leq 0$ hoặc $P>0$ rồi kết luận hàm số không có GTLN là sai.

Bởi vậy những câu hỏi ở dưới là vô nghĩa.

Việc gọi $P$ là hàm số lên lớp cao hơn em sẽ được học, còn bây giờ chỉ cần gọi đơn giản là phân thức/ biểu thức.

Hàm số, có dạng $y=f(x)$ biểu diễn mối liên hệ giữa biến $x$ với biến phụ thuộc $y$. Mỗi giá trị của $x$ ta luôn xác định được một giá trị tương ứng của $y$.

 

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

$P=AB=\frac{\sqrt{x}}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}$

Để $P_{\max}$ thì $\frac{1}{\sqrt{x}-1}$ max

Điều này xảy ra khi $\sqrt{x}-1$ min và có giá trị dương 

$\Leftrightarrow x>1$ và $x$ nhỏ nhất

Trong tập số thực thì em không thể tìm được số lớn hơn 1 mà nhỏ nhất được. Như kiểu $1,00000000000000000000....$ (vô hạn đến không biết khi nào thì kết thúc)

Do đó $P$ không có max

Min cũng tương tự, $P$ không có min.

26 tháng 8 2020

=\(\sqrt{\left(5+2\sqrt{6}\right)+\left(2\sqrt{10}+2\sqrt{15}\right)+5}\)

=\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2+2\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)^2}\)

=\(\sqrt{3}+\sqrt{2}+\sqrt{5}\)

26 tháng 2 2019

m<9 ạ em nhầm!

27 tháng 2 2019

Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)

Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?

Riêng mình thì bài này mình dùng delta phẩy cho lẹ:

                                       Lời giải

Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:

\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)

\(\Leftrightarrow m< 9\)

22 tháng 9 2018

Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng. 

Bạn tham khảo nha

14 tháng 7 2018

n là số nguyên dương

Bình phương hai vế, ta được:

\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)

\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)

Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)

Mà 2n + 3 > 2n + 1

 \(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)

=> ( √n+2 -  √n+1)^2 > ( √n-1 -  √n)^2

=>  √n+2 -  √n+1 >  √n-1 -  √n

P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn

14 tháng 7 2018

Hình như sai b ạ

(Một màn ảo thuật với những lá bài tây.)Bạn có bộ bài \(52\) lá.Đầu tiên, hãy rút \(19\) là đầu tiên ra để riêng, nhưng chúng vẫn để úp. Bạn để cho đối phương chọn 1 lá, để họ bí mật coi nó và yêu cầu họ nhớ đó là lá gì.Sau đó, đặt lá của đối phương lên TRÊN CÙNG của tụ \(19\) lá này. Lúc này bạn có 2 tụ. Để tụ \(19\) ở DƯỚI tụ còn lại.Bây giờ, bạn bắt...
Đọc tiếp

(Một màn ảo thuật với những lá bài tây.)

Bạn có bộ bài \(52\) lá.

Đầu tiên, hãy rút \(19\) là đầu tiên ra để riêng, nhưng chúng vẫn để úp. Bạn để cho đối phương chọn 1 lá, để họ bí mật coi nó và yêu cầu họ nhớ đó là lá gì.

Sau đó, đặt lá của đối phương lên TRÊN CÙNG của tụ \(19\) lá này. Lúc này bạn có 2 tụ. Để tụ \(19\) ở DƯỚI tụ còn lại.

Bây giờ, bạn bắt đầu đếm ngược từ \(10\) về \(1\), mỗi lần đếm ngược bạn lật ngửa một lá bài trên mặt của bộ bài, để riêng thành 1 tụ. Có 2 khả năng:

  • Nếu số bạn đếm và số trên lá bài bằng nhau (J,Q,K coi như không có số, A là số một) thì dừng.
  • Nếu bạn đếm đến \(1\) mà số bạn đếm vẫn khác số trên lá bài thì lấy lá tiếp theo của bộ bài đặt lên tụ đó (lá này để úp).

Bạn làm như vậy tổng cộng 3 lần, được \(3\) tụ.

Rồi bạn cộng các số trên mặt của các tụ này (A là số một, lá úp là số không).

Tương ứng với tổng đó bạn lấy ra số lá bài đúng số lượng đó từ tụ \(52\) lá.

Rồi bạn thách thức đối phương: Tôi sẽ đoán được lá bài bạn mới nhìn thấy.

Bạn lật lá tiếp theo của tụ bài ra, để ngửa và đối phương sẽ giật mình.

Hãy giải thích màn ảo thuật này. Nếu bạn thấy hay thì thử biểu diễn cho mọi người nhé.

3
27 tháng 1 2017

Khi đặt tụ 19 lá dưới tụ còn lại thì lá bài của đối phương sẽ là lá bài thứ 34 (tụ ở trên có 33 lá)
nếu theo khả năng 2 : đếm đến 1 mà số đếm vẫn khác....... thì số bài đã lấy ra sẽ đúng 33 lá
Khi đó lá bài tiếp theo (úp) sẽ là lá bài của đối phương : lá thứ 34.
p/s: làm thử 1 trường hợp vì không chắc .-.
 

21 tháng 1 2017

mình không hiểu lắm

sao lại có hai tụ

tụ là gì

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Bài 1:

Nếu chị nhớ không nhầm thì phải là \(\left[\begin{matrix} \frac{1}{2}\leq x< 2\\ 0< x<\frac{1}{2}\end{matrix}\right.\)

Tức là $x$ nhận các khoảng giá trị sau:

\(0< x< \frac{1}{2}\)\(x=\frac{1}{2}\)\(\frac{1}{2}< x< 2\)

Vậy có nghĩa $0< x< 2$ (rất dễ hiểu mà????)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Bài 2:

Ngoặc nhọn dùng khi muốn biểu thị hai/ nhiều phương trình/ bất phương trình đồng thời xảy ra cùng một lúc

Ngoặc vuông dùng khi muốn biểu thị cái này hoặc cái kia xảy ra.

Bài trên phải dùng ngoặc vuông là sao em? Ngoặc nhọn thường xuất hiện trong bài toán giải hệ phương trình, bất phương trình. Còn ngoặc vuông thì thường dùng kết luận nghiệm của pt/ bpt.

Kết hợp điều kiện thì dùng ngoặc nhọn. Ví dụ $\sqrt{x+1}+\sqrt{2-x}$ thì việc $x+1\geq 0$ và $2-x\geq 0$ phải đồng thời xảy ra cùng lúc.