Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a1,a2,a3,...,an nhận các giá trị 1 hoặc -1
=> a1a2;a2a3;a3a4;...;ana1 cũng nhận các giá trij1 hoặc -1
mà a1a2+a2a3+...+ana1=0
Nên n số hạng của tổng có m giá trị bằng 1 và có m giá trị bằng -1
=> n=m+m=2m (m thuộc N*) (1)
Mặt khác: a1a2a3a4...ana1 = (a1a2a3...an)^2 >0
Nên số thừa số nguyên âm là chẵn
=>m=2p (p thuộc N*) (2)
Từ (1) và (2) => n = 2.(2p) = 4p chia hết cho 4
Vậy n chia hết cho 4
Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3
Mà (2,3)=1 => a3-a chia hết cho 6
=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6
Vậy S chia hết cho 6 <=> P chia hết cho 6
xét M - N
chứng minh a^5 -a chia hết cho 30
a( a^4 - 1) =a(a^2+ 1)(a-1)(a+1)=a(a^2-4+5)(a-1)(a+1)=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1) chia hết cho 30 (vì tích 3 số nguyên liên tiếp
chia hết cho 6;tích 5 số nguyên liên tiếp chia hết cho 5)
M-N chia hết cho 30
mà N chia hết cho 30 => M chia hết cho 30