Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
để f(x) và g(x) cùng chia hết cho -2x+6
=>\(\hept{\begin{cases}f\left(3\right)=0\\g\left(3\right)=0\end{cases}}\)<=>\(\hept{\begin{cases}\frac{3867}{20}-m+n=0\\\frac{1911}{11}+3m-n=0\end{cases}}\)<=>\(\hept{\begin{cases}-m+n=-\frac{3867}{20}\\3m-n=-\frac{1911}{11}\end{cases}< =>\hept{\begin{cases}m=-183,5386364\\n=-376,8886364\end{cases}}}\)
a2+b2=a3+b3=1
suy ra a = 1 hoặc b = 1
suy ra a4+b4cũng =1
bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé
Lời giải:
Chứng minh $n^2$ chia $3$ dư $0$ hoặc $1$. Bạn xét modulo $3$ cho $n$
- Với $n\equiv 0\pmod 3\Rightarrow n^2\equiv 0\pmod 3$
- Với $n\equiv 1\pmod 3\Rightarrow n^2\equiv 1^2\equiv 1\pmod 3$
- Với $n\equiv 2\pmod 3\Rightarrow n^2\equiv 2^2\equiv 1\pmod 3$
Từ các TH trên suy ra $n^2$ chia $3$ dư $0$ hoặc $1$
---------------
Hoàn toàn tương tự:
- Với $n$ chẵn thì $n\vdots 2\Rightarrow n^2\vdots 4$ hay $n^2$ chia $4$ dư $0$
- Với $n$ lẻ thì $n$ chia $4$ dư $1$ hoặc $3$
Nếu $n\equiv 1\pmod 4\Rightarrow n^2\equiv 1^2\equiv 1\pmod 4$
Nếu $n\equiv 3\pmod 4\Rightarrow n^2\equiv 3^2\equiv 1\pmod 4$
Từ trên suy ra $n^2$ chia $4$ dư $0$ hoặc $1$
Ta có đpcm.
Lời giải:
Chứng minh $n^2$ chia $3$ dư $0$ hoặc $1$. Bạn xét modulo $3$ cho $n$
- Với $n\equiv 0\pmod 3\Rightarrow n^2\equiv 0\pmod 3$
- Với $n\equiv 1\pmod 3\Rightarrow n^2\equiv 1^2\equiv 1\pmod 3$
- Với $n\equiv 2\pmod 3\Rightarrow n^2\equiv 2^2\equiv 1\pmod 3$
Từ các TH trên suy ra $n^2$ chia $3$ dư $0$ hoặc $1$
---------------
Hoàn toàn tương tự:
- Với $n$ chẵn thì $n\vdots 2\Rightarrow n^2\vdots 4$ hay $n^2$ chia $4$ dư $0$
- Với $n$ lẻ thì $n$ chia $4$ dư $1$ hoặc $3$
Nếu $n\equiv 1\pmod 4\Rightarrow n^2\equiv 1^2\equiv 1\pmod 4$
Nếu $n\equiv 3\pmod 4\Rightarrow n^2\equiv 3^2\equiv 1\pmod 4$
Từ trên suy ra $n^2$ chia $4$ dư $0$ hoặc $1$
Ta có đpcm.