K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

Vì n là số tự nhiên lớn hơn 1 nên sảy ra hai trường hợp

Th1: n là số chắn  => n4 + 4n  là , hợp số.

Th2: n số lẻ  => n = 2k + 1

Thì n+ 4n  = n+ 42k + 1 = (n2 + 22k + 1)2 - n2.22k + 2 = (n2 + 22k + 1 + n.2k + 1 )  (n2 + 22k + 1 - n.2k + 1 

Ta có : n2 + 22k + 1 \(\ge2.n.2\frac{2k+1}{2}=n.2^{k+1}\)

Mà n là số lẻ và lờn hơn 1 nên n2 + 22k + 1 - n.2k + 1 > 1

Vậy n4 + 4n là hợp số 

20 tháng 7 2017

Có 2 trường hợp:

Th 1: \(n\)chẵn suy ra đương nhiên \(n^4+n^4\)là hợp số 

Th 2: \(n\)lẻ suy ra \(n=2k+1\)

Suy ra:

\(n^4+n^4=n^4+n^{2n}=n^4+2.2^n+2^{2n}-2.2^n=\left(n^2+2^n\right)^2-2.2^{2k+1}=\left(n^2+2^n\right)^2-\left(2^k+1\right)^2\)

\(=\left(n^2+2^n-2^{k+1}\right)\left(n^2+2^n+2^{k+1}\right)\)

Suy ra là tích của 2 số nên nó là hợp số
 

21 tháng 9 2017

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3

Vậy, ta có điều phải chứng min

2 tháng 4 2018

  zdvdz

6 tháng 11 2015

ông cũng chơi bang bang ak tích tui nha

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

9 tháng 3 2017

có anh chị gv nào giúp em với

9 tháng 3 2017

Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy