K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Ta có: 1+2+3+.....+(n-1)+n+(n-1)+....+3+2+1=k2

<=>(1+1)+(2+2)+(3+3)+....+[(n-1)+(n-1)]+n=k2

<=>[2+4+6+......+(n-1+n-1)]+n=k2

<=>[2+4+6+......+(2n-2)]+n=k2

<=>2(1+2+3+....+(n-1)]=k2

từ 1 đến n-1 có:(n-1)-1+1=n-1(số hạng)

=>1+2+3+.....+n-1=\(\frac{\left[\left(n-1\right)+1\right].\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\)

=>\(2.\frac{n\left(n-1\right)}{2}+n=k^2\)

\(\Rightarrow\frac{2n\left(n-1\right)}{2}+n=k^2\Rightarrow n\left(n-1\right)+n=k^2\Rightarrow n^2-n+n=k^2\Rightarrow n^2=k^2\Rightarrow n=k\)

vậy k=n

13 tháng 3 2016

mik ko biết

ai tích mình tích lại 

ai tích lại mình tích lìa nhà nhà

12 tháng 2 2017

Ta có: \(1+2+3+.......+(n-1)+n+.....+3+2+1=k^2\)
Suy ra \(2.\frac{n(n-1)}{2}+n=k^2\)
\(n(n-1)+n=k^2\)
Suy ra \(n^2=k^2\)
Suy ra \(k = n\)

15 tháng 1 2018

Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath

Bài 1 em tham khảo tại link trên nhé.

9 tháng 3 2016

Mình cx thi , đáp án là : n + 1 

9 tháng 3 2016

giúp tôi đag cần gấp.cảm ơn mọi người trước

14 tháng 5 2016

a) Có f(2) = 1.f(1)=1.1=1

f(3) = 2.f(2)=2.1=2

f(4) = 3 .f(3) = 3.2.1=6

f(5) = 4.f(4) = 4.3.2.1 = 24

f(6) = 6.f(5)=5.4.3.2.1=120

b) Tiếp tục tính như phần a ta có :

* Số tự nhiên k lớn nhất để 5\(^k\)là ước của f(101) là số thừa số 5 khi phân tích 1.2.3.4.5........98.99.100 ra thừa số nguyên tố ,tức là tổng các bội số của 5 ,của 5\(^2\)trong dãy số 1,2,3,4,5,...,98,99,100

* Các bội số của 5 trong dãy trên là : 5,10,15,............,100 gồm 100 : 5 = 20 số ; trong đó các bôi của 5\(^2\)là 25,50,75,100 có 4 số 

* Vậy số thừa số 5 khi phân tích 1.2.3.4.5..........98.99.100  ra thừa số nguyên tố là : 20 + 4 = 24

+ Vậy số k lớn nhất để 5 là ước của f(101) là 24 

14 tháng 5 2016

f(6)=120

số tự  nhiên k lớn nhất là 24

k mk nha mk gửi lời giải chi tiết cho ^^

chúc bạn hok tốt ná!

15 tháng 7 2015

+) Nhận xét: Với n thuộc N ta có :   n3 - n = n(n- 1) = n.(n - 1).(n + 1) 

n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6

Xét S - N = (n13+n23+...+nk3 ) -  (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk

từ nhận xét trên =>  n13 - n chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6

=> S - N chia hết cho 6 

=> S và N có cùng số dư khi chia cho 6

Xét N = 20152016 chia cho 6

Có: 2015 đồng dư với 5 (mod 6)

=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)

=> 20152 đòng dư với 1 (mod 6)

=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)

=> N chia cho 6 dư 1 => S chia cho 6 dư 1

a: \(10^{n+1}=10^n\cdot10\)

b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)

\(=2^n\cdot8+2^n=9\cdot2^n\)

c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)

23 tháng 5 2020

\(a, 10^{n+1} -6.10 ^n\)

= \(10^n (10-6)=4.10^n\)

\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)

= \(2^n (2^3+2^2-2+1)\)

= \(2^n (8+4-2+1)\)

\(= 11.2^n\)

\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)

\(= 10^k(90-2+1)\)

= \(89.10^k\)

\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)

\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)

= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)

= \(5^{n-3+2}+5^n -6.5^{n-1}\)

\(= 5^{n-1}(1+5-6)\)

= \(5^{n-1}.0\)

= 0

24 tháng 5 2020

cảm ơn ạ

25 tháng 9 2020

c) 3n + 2 - 3n + 1 = 1458

=> 3n . 32 - 3n . 31 = 1458

=> 3n (32 - 3) = 1458

=> 3n . 6 = 1458

=> 3n = 243

=> n = 5

d) 2n - 1 + 4.2n = 9.25

=> 2n . 21 + 4.2n = 9.25

=> 2n (2 + 4) = 9.25

=> 2n . 6 = 9.25

=> 2n = \(\frac{9\cdot2^5}{6}=48\)

=> không tìm được x