Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ
Số lẻ + Số lẻ = Số chẵn
=> n + 2015 là hợp số
Do n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
=>n=3k+1 hoặc a=3k+2 (k khác 0)
Xét n=3k+1
=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)
Xét n=3k+2
=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3) (2)
(1)(2)=>n^2 là số nguyên tố
Vì n > 3 nên n có dạng 3k+1 và 3k+2.
TH1: nếu n có dạng 3k+1 thì:
n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015
Vì 9k.3k chia hết cho 3
3k chia hết cho 3
2015 không chia hết 3
=> n^2+2015 là số nguyên tố.
TH2:nếu n có dạng 3k+2 thì:
n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019
Vì 9k^2 chia hết cho 3
12k chia hết cho3
2019 chia hết cho 3
=>n^2+2015 là hợp số
Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.
nếu n có dạng 3k+2 thì n^2+2015 là hợp số.
k cho mk nha bạn
a , n không thoả mãn yêu cầu bài toán
b, n2+2006 là hợp số
bài này giải dài lắm
Vì n là số nguyên tố lớn hơn 3 => n có dạng hoặc 3k + 1 hoặc 3k + 2
+ Nếu n = 3k + 1
=> n2 + 2018 = ( 3k + 1 )2 + 2018 = 9k2 + 6k + 1 + 2018 = 9k2 + 6k + 2019 = 9k2 + 6k + 2019 \(⋮\)3 và n2 + 2018 > 3 ( là hợp số )
+ Nếu n = 3k + 2
=> n2 + 2018 = ( 3k + 2 )2 + 2018 = 9k2 + 12k + 4 + 2018 = 9k2 + 12k + 2022 \(⋮\)3 và > 3 ( là hợp số )
Vậy n là số nguyên tố lớn hơn 3 thì n2 + 2018 là hợp số
n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số
Vì vậy: n2+2015 là hợp số
-Vì n là số nguyên tố lớn 3 nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)
Với n =3k+1:
n2+2015=(3k+1)2+2015
=(3k+1).(3k+1)+2015
=3k(3k+1)+(3k+1)+2015
=9k2+3k+3k+1+2015
=9k2+6k+2016
Ta có:
9k2 chia hết cho 3
6k chia hết cho 3
2016 chia hết cho 3
=> 9k2+6k+2016 chia hết cho 3
Mà 9k2+6k+2016 > 3
=> 9k2+6k+2016 là hợp số
=>n2+2015 là hợp số (1)
Với n=3k+2:
n2+2015=(3k+2)2+2015
=(3k+2).(3k+2)+2015
=3k(3k+2)+2(3k+2)+2015
=9k2+6k+6k+4+2015
=9k2+12k+2019
Ta có:
9k2 chia hết cho 3
12k chia hết cho 3
2019 chia hết cho 3
=> 9k2+12k+2019 chia hết cho 3
Mà 9k2+12k+2019 > 3
=> 9k2+12k+2019 là hợp số
=>n2+2015 là hợp số (2)
Từ (1) và (2) suy ra : n2+2015 là hợp số
Vậy n2+2015 là hợp số
nhớ tick ủng hộ mình !