K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

vì n là số nguyên tố không chia hết cho 3 => khi chia n cho 3 ta có 2 dạng: n=3k+1 hoặc n= 3k+2 (k\(\in\) N )

*) xét n=3k+1 => n2=(3k+1)2=(3k+1).(3k+1)=(3k+1).3k+(3k+1).1

                                          =9k2.3k+3k+1 

                                         = 3.(32+k+k) +1 chia 3 dư 1.(1)

*) xét n=3k+2. => n2=(3k+2)2=(3k+2).(3k+2) = (3k+2).3k+(3k+2).2

                                          =9k2+6k+6k+4=9k2+6k+6k+3+1

                                          =3.(3k2+2k+2k+1)+1 chia 3 dư 1. (2)

từ (1) và (2) => n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.

vậy n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.(đpcm)

chúc bạn năm mới hạnh phúc. k mình nha.

                                         

5 tháng 1 2017

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n 2 = (3k +1).(3k +1) = 9k 2 + 6k + 1 = 3.(3k 2 + 2k) + 1 => n 2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n 2 = (3k +2).(3k+2) = 9k 2 + 12k + 4 = 3.(3k 2 + 4k +1) + 1 => n 2 chia cho 3 dư 1

Vậy... 

3 tháng 12 2020

a) Nếu n = 3k+1 thì n2n2 = (3k+1)(3k+1) hay n2n2 = 3k(3k+1)+3k+1

Rõ ràng n2n2 chia cho 3 dư 1

Nếu n = 3k+2 thì n2n2 = (3k+2)(3k+2) hay n2n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2n2 chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2p2 chia cho 3 dư 1 tức là p2=3k+1p2=3k+1 do đó p2+2003=3k+1+2003p2+2003=3k+1+2003 = 3k+2004⋮⋮3

Vậy p2+2003p2+2003 là hợp số

25 tháng 10 2019

a) n là số ko chia hết cho 3 => có dạng 3k +1. Ta có : (3k+1) 2 = 3k2 + 1. Ta có 3k ^2 chia hết cho 3 ; 1^2 chia 3 dư 1 => n ^2 chia ba dư 1

b) vì p là SNT lớn hơn 3 => p^2 chia cho 3 có dạng 3k +1 . Ta có 3k+1 + 2003 = 3k + 2004 chia hết cho 3 => là hợp số

25 tháng 10 2019

a) Vì n là số không chia hết cho 3 nên n có dạng 3k+1 hoặc 3k+2

+) n = 3k+1 => n2 = (3k+1)

                             = 9k2 + 6k +1 

Có 9k2 \(⋮\)3 ; 6k \(⋮\)3  ; 1 \(⋮\) 3 dư 1 => 9k2 +6k +1 chia 3 dư 1 

                                   hay n2 chia 3 dư 1    (1)

+) n= 3k+2  => n= (3k+2)2   = 9k2 +12k + 4

Có 9k2 \(⋮\)3 ; 12k\(⋮\)3 ; 4 chia 3 dư 1   => 9k2 +12k +4 chia 3 dư 1 

                                                                hay n2 chia 3 dư 1     (2)

Từ (1),(2) => đpcm

25 tháng 11 2015

Vậy n2:3 dư 1

25 tháng 11 2015

a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2  

+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1

+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1

Vậy n2 : 3 dư1

b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số

Hồi nãy mình trả lời rồi mà

2 tháng 12 2017

Mình thấy ko hiểu cho lắm.