Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(\Rightarrow P=\frac{1}{1^3}+\frac{1}{2^3}+...+\frac{1}{n^3}< \frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(\Rightarrow P< \frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{n\left(n+1\right)}\right)\)
\(\Rightarrow P< 1+\frac{1}{2^3}+\frac{1}{2}.\frac{1}{2.3}=1+\frac{1}{8}+\frac{1}{12}=\frac{29}{24}< \frac{65}{54}\)
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)
Gọi A là vế trái của bất đăng thức trên . ta sử dụng tính chất bắc cầu của bất đẳng thức dưới dạng phương pháp làm trội , để chứng minh A< b , ta làm trội A thành C ( A<C ) rồi chứng minh C>= B ( biểu thức C đóng vai trò là biểu thức trung gian để so sánh A và B)
làm trội mỗi phân số ở A bằng cách làm giảm các mẫu , ta có
\(\frac{1}{k^3}\)< \(\frac{1}{k^3-k}\)= \(\frac{1}{k\left(k^2-1\right)}\)= \(\frac{1}{\left(k-1\right)k\left(k+1\right)}\)
do đó
A < \(\frac{1}{2^3-2}\)+ \(\frac{1}{3^3-3}\)+.....+\(\frac{1}{n^3-n}\)= \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ .....+ \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
đặt C = \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+.....+\(\frac{1}{\left(n-1\right)n\left(n+1\right)}\), nhận xét rằng
\(\frac{1}{\left(n-1\right)n}\)- \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
nên C = \(\frac{1}{2}\)[\(\frac{1}{1.2}\)- \(\frac{1}{2.3}\)-......- \(\frac{1}{\left(n-1\right)n}\)-\(\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{2}\)[\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)]
= \(\frac{1}{4}\)- \(\frac{1}{2n\left(n+1\right)}\)< \(\frac{1}{4}\)
vậy ta có điều phải chứng minh
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)
\(\Rightarrowđpcm\)
Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)
=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> \(A< 2-\frac{1}{n}\) (ĐPCM)