Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
1/ Ta có:
\(a^5-a^3+a=2\)
Dễ thấy a = 0 không phải là nghiệm từ đó ta có:
\(a^6-a^4+a^2=2a\)
\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)
\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)
Dấu = không xảy ra
Vậy \(a^6< 4\)
Câu 2/
Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Ta có:\(\frac{1}{\left(k +1\right)\sqrt{k}}=\frac{\left(k+1\right)-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)
\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)
Cho k=1,2,,,,n rồi cộng vế với vế ta có;
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)+...\)
\(+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)
Vậy bất đẳng thức được chứng minh