K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}\)

\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{n}{3^{n-1}}\)

\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}-\dfrac{n}{3^n}< 1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)

Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)

Tương tự ta được \(2B=3-\dfrac{1}{3^{n-1}}< 3\)

\(\Rightarrow B< \dfrac{3}{2}\Rightarrow2A< \dfrac{3}{2}\Rightarrow A< \dfrac{3}{4}\)(đpcm)

BonkingTrần Trung Nguyên làm giùm bài này luôn đi

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

25 tháng 8 2017

\(a^2+b^2+c^2=\dfrac{5}{3}< 2\)

\(a^2+b^2+c^2\ge2bc+2ac-2ab\)

Do đó : \(2bc+2ac-2ab< 2\)

Chia cả hai vế cho 2abc ta được

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\) (đpcm)

28 tháng 5 2017

Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với

3 tháng 1 2019

Bài 1:

Q = A.B = \(\dfrac{x-3}{x+1}\).\(\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)

= \(\dfrac{x-3}{x+1}\).\(\dfrac{x+3}{x-3}\)=\(\dfrac{x+3}{x+1}\)

= \(\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\)

Để biểu thức Q có giá trị là một số nguyên thì \(\dfrac{2}{x+1}\)nguyên

=> x+1 \(\in\) Ư(2)

Mà Ư(2) = { -1;1;2;-2}

Ta có bảng:

x+1 1 -1 2 -2
x 0 -2 1 -3

Điều kiện xác định của biểu thức Q là x ≠ -1,3,-3

Vậy x ∈ { 0;-2;1;-3}

16 tháng 12 2022

Bài 2:

\(P=\left(\dfrac{\left(2x-1\right)\left(x-3\right)+x\left(x+3\right)-3+10x}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x-3}{x+2}\)

\(=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{x+3}\cdot\dfrac{1}{x+2}\)

\(=\dfrac{3x^2+6x}{x+3}\cdot\dfrac{1}{x+2}=\dfrac{3x}{x+3}\)

Để P nguyên dương thì \(\left\{{}\begin{matrix}3x+9-9⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3;9;-9\right\}\\\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{-4;-6;6;-12\right\}\)

8 tháng 12 2018

Câu hỏi t/tự