Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với
Bài 1:
Q = A.B = \(\dfrac{x-3}{x+1}\).\(\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
= \(\dfrac{x-3}{x+1}\).\(\dfrac{x+3}{x-3}\)=\(\dfrac{x+3}{x+1}\)
= \(\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\)
Để biểu thức Q có giá trị là một số nguyên thì \(\dfrac{2}{x+1}\)nguyên
=> x+1 \(\in\) Ư(2)
Mà Ư(2) = { -1;1;2;-2}
Ta có bảng:
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Điều kiện xác định của biểu thức Q là x ≠ -1,3,-3
Vậy x ∈ { 0;-2;1;-3}
Bài 2:
\(P=\left(\dfrac{\left(2x-1\right)\left(x-3\right)+x\left(x+3\right)-3+10x}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x-3}{x+2}\)
\(=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{x+3}\cdot\dfrac{1}{x+2}\)
\(=\dfrac{3x^2+6x}{x+3}\cdot\dfrac{1}{x+2}=\dfrac{3x}{x+3}\)
Để P nguyên dương thì \(\left\{{}\begin{matrix}3x+9-9⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3;9;-9\right\}\\\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-4;-6;6;-12\right\}\)
Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{n}{3^n}\)
\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{n}{3^{n-1}}\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}-\dfrac{n}{3^n}< 1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}\)
Tương tự ta được \(2B=3-\dfrac{1}{3^{n-1}}< 3\)
\(\Rightarrow B< \dfrac{3}{2}\Rightarrow2A< \dfrac{3}{2}\Rightarrow A< \dfrac{3}{4}\)(đpcm)
BonkingTrần Trung Nguyên làm giùm bài này luôn đi