Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n2+3n+5=n2+n+2n+5=n.(n+1)+2n+2+3=n.(n+1)+2.(n+1)+3=(n+2).(n+1)+2
Vì (n+2).(n+1) chia hết cho n+1.
=>(n+2).(n+1)+2 : n+1(dư 2)
Vậy n2+3n+5:n+1(dư 2)
Với n=1
\(S=2^3+2^2+1=13\) không chia hết cho 7
Bạn kiểm tra lại đề xem
Với n=1
S=2^3+2^2+1=13 không chia hết cho 7
Bạn kiểm tra lại đề xem
\(2^{3n-1}=8^{n-1}.4\equiv1^{n-1}.4\equiv4\left(\text{mod 7}\right)\left(\text{vì: n\inℕ^∗}\right)\text{ chia 7 dư 4};2^{3n+1}=8^n.2\equiv1^n.2\equiv2\left(\text{mod 7}\right)\)
chia 7 dư 2
\(\Rightarrow2^{3n+1}+2^{3n-1}+1\text{ chia hết cho 7 và lớn hơn 7 nên là hợp số}\)
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Vì n nguyên dương nên 3n+1 nguyên dương và lớn hơn hoặc = 4 ; 3n-1 nguyên dương và lớn hơn hoặc = 2
=> 2^3n+1 tận cùng là 2 và lớn hơn hoặc = 16; 2^3n-1 tận cùng là 2 và lớn hơn hoặc = 4
=> 2^3n+1 + 2^3n-1 + 1 tận cùng là 5 và 2^3n+1 + 2^3n-1 + 1 lớn hơn hoặc = 21
=> A tận cùng là 5 và A lớn hơn hoặc = 21
=> A chia hết cho 5 và A>5
=> A có ít nhất 3 ước là 1; 5 và A
=> A là hợp số
Vậy bài toán được chứng minh