\(\ge\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

giúp mình với

khocroikhocroikhocroi

13 tháng 6 2019

#)Giải :

Lấy điểm C tùy ý trên mặt phẳng chứa n điểm, ta có :

\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)

\(\Rightarrow\left(\overrightarrow{CB_1}-\overrightarrow{CA_1}\right)+\left(\overrightarrow{CB_2}-\overrightarrow{CA_2}\right)+...+\left(\overrightarrow{CB_n}-\overrightarrow{CA_n}\right)=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{A_1B_1}+\overrightarrow{A_2B_2}+...+\overrightarrow{A_nB_n}=\overrightarrow{0}\left(đpcm\right)\)

13 tháng 6 2019

²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) :    cái đoạn thứ 3 bỏ ngoặc với \(\overrightarrow{0}\) đi nhé !

Thay vào chỗ \(\overrightarrow{0}\)là : 

\(=\left(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}\right)-\left(\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\right)\)

Vì n điểm \(B_1,B_2,....,B_n\)cũng là n điểm \(A_1,A_2,...,A_n\)nhưng được kí hiệu 1 cách khác nên ta có:

\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)

=> đpcm

ý kiến riêng của tớ =))

10 tháng 11 2016

1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...

2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)

\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)

\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)

\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)

\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)

c/ A M C B N BC=8 AC=7 AB=6

  • Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)

\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)

\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)

  • \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)

\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)

\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)

\(=\frac{173}{2}\)

\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)

20 tháng 9 2020

@Nguyễn Việt Lâm