\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad>bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )

Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)

<=>2018a.d<2018c.b

<=>2018a.d+c.d<2018c.b+c.d

<=>d(2018a+c)<c(2018b+d)

<=>đpcm

Ta có:a/b<c/d<=>a.d<b.c

<=>2018a.d<2018b.c

<=>2018a.d+c.d<2018b.c+d.c

<=>d(2018a+c)<c(2018b+d)

<=>2018a+c/2018b+d<c/d(dpcm)

Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)

\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)

\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)

11 tháng 6 2019

Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)

\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you