K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

M là số nguyên `<=> 10-3n \vdots 5-3n`

`<=> (5-3n)+5 \vdots (5-3n)`

`<=> 5 \vdots (5-3n)`

`<=> (5-3n) \in Ư(5)`

`<=> 5-3n \in {-5;5;-1;1}`

`<=> -3n \in {-10;0;-5;-4}`

`<=> n \in {10/3 ; 0 ; 5/3 ; 4/3}`

4 tháng 6 2021

Để M là số nguyên thì 10-3n⋮5-3n

5+5-3n⋮5-3n

5-3n⋮5-3n

⇒5⋮5-3n                           ⇒5-3n∈Ư(5)

Ư(5)={-1;1;-5;5}

⇒n∈{2;0}

 

26 tháng 2 2018

\(M=\frac{3n-5}{n+4}\) nguyên

\(\Leftrightarrow3n-5⋮n+4\)

\(\Rightarrow\left(3n+12\right)-12-5⋮n+4\)

\(\Rightarrow3\left(n+4\right)-17⋮n+4\)

      \(3\left(n+4\right)⋮n+4\)

\(\Rightarrow-17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)\)

      \(n\in Z\Rightarrow n+4\in Z\)

\(\Rightarrow n+4\in\left\{-1;1;-17;17\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-21;13\right\}\)

26 tháng 2 2018

Ta có M = \(\frac{3n-5}{n+4}\)là phân số   <=>  n + 4 \(\ne\)0

<=>  n \(\ne\)-4 

M là một số nguyên <=>  \(3n-5⋮n+4\)<=> \(3\left(n+4\right)-17\)\(⋮n+4\)

<=> \(17⋮n+4\)<=>  \(n+4\in\left\{-17;-1;1;17\right\}\)

<=>  \(n\in\left\{-21;-5;-3;13\right\}\)

4 tháng 2 2022

這是 這,也 也 這 我最 一開始 也覺得 我好 一, 這。 也有 ^ - ^ 不主

4 tháng 2 2022

????????????????

27 tháng 4 2023

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)

15 tháng 3 2022

Ta có:

\(\frac{8-3n}{5-3n}\inℤ\)

\(\Rightarrow\frac{3+5-3n}{5-3n}\inℤ\)

\(\Rightarrow\frac{3}{5-3n}+\frac{5-3n}{5-3n}\inℤ\)

\(\Rightarrow\frac{3}{5-3n}+1\inℤ\Leftrightarrow\frac{3}{5-3n}\inℤ\)

\(\Rightarrow3⋮5-3n\)

\(\Rightarrow5-3n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow3n\in\left\{\pm6;\pm8\right\}\)

\(\Rightarrow\hept{\begin{cases}n=6:3\\n=8:3\left(\notinℤ\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}n=2\\n=\frac{8}{3}\left(loại\right)\end{cases}}\)

\(\Rightarrow n=2\)

14 tháng 3 2018

Ta có : \(M=\frac{3\left(n+2\right)+5}{n+2}=3+\frac{5}{n+2}\)

=> \(M\in Z\) <=> \(\frac{5}{n+2}\in Z\) => \(n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{-1;-3;3;-7\right\}\)

Vậy ...

3 tháng 2 2022

\(\frac{10-3n}{5-3n}\inℤ\Leftrightarrow\frac{10-n}{5-n}\inℤ\)

\(\Rightarrow\frac{5-n}{n}\inℤ\Leftrightarrow n\in\left\{1;-1;5;-5\right\}\)

7 tháng 1 2019

\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)

Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)

\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)

\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)

Vậy \(n=1;3\)