Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|-3=-4\\\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|-3=4\end{matrix}\right.\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{4}\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{4}=7\\\dfrac{1}{2}x-\dfrac{1}{4}=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{29}{4}\\\dfrac{1}{2}x=-\dfrac{27}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{2}\\x=-\dfrac{27}{2}\end{matrix}\right.\)
bài này dễ bạn nhóm 4 số 1 lại với nhau rồi đặt thừa số chung nha
VD nhóm (3+3^2+3^3+3^4)+.......+(3^9700+3^9800+3^9900+3^10000)
=3(1+3+3^2+3^3)+.....+3^9700(1+3+3^2+3^3)
=40(3+...+3^9700) chia hết cho 40 ok
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Kết luận ...
\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)
=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)
=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)
Chúc bạn học tốt !
\(4\cdot\left(\frac{1}{4}\right)^2+25\cdot\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=4\cdot\frac{1}{16}+25\cdot\left[\left(\frac{3}{4}\div\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{3}{5}\right)^3\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25\cdot\frac{8}{125}\)
\(=\frac{1}{4}\cdot\frac{8}{5}\)
\(=\frac{2}{5}\)
\(4.\left(\frac{1}{4}\right)^2+25.\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3\)
\(=4.\frac{1}{16}+25\left[\left(\frac{3}{4}:\frac{5}{4}\right)^3:\right]:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{3}{5}\right)^3:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25.\frac{8}{125}\)
\(=\frac{1}{4}+\frac{8}{5}\)
\(=\frac{2}{5}\)
P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5\left(1-3\right)\)
\(=2^{12}\cdot-2\cdot3^5\)
\(=-2^{13}\cdot3^5\)
b)
\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\)
\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)
\(=2\cdot2^{12}\cdot3^6\)
\(=2^{13}\cdot3^6\)
M chia hết ch0 420 hay 20