Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
Vì 5x1y chia 5 dư 1 nên y=1 hoặc y=6
mà 5x1y chia hết cho2 nên y=6
thay y=6 vào 5x1y ta được 5x16
lại có số cần tìm chia hết cho 3 nên 5+x+1+6 chia hết cho 3
hay12+x chia hết cho 3
suy ra x=0; x=3 ;x=6 hoặc x=9
mà số cần tìm có các chữ số khác nhau
nên x=0;x=3;x=9 và y=6
B2:
Do A = x036y chia 2 và 5 dư 1 => y = 1
Ta có số: x0361 chia 9 dư 1
=> x + 0 + 3 + 6 + 1 chia 9 dư 1
=> x + 10 chia 9 dư 1
Mà x là chữ số khác 0 => x = 9
Vậy x = 9; y = 1
bạn ơi mik làm bài 1 khác bạn nhưng mik tính lại của mik và bn đều đúng
5x17y chia hết cho 2 và chia 5 dư 4 <=> y = 4
Thay y = 4 ta được số 5x174
5x174 chia hết cho 3 <=> (5+x+7+4) chia hết cho 3
<=> (16+x) chia hết cho 3
=> x = {2;5;8}
Vậy y=4 ; x=2;5;8
tick nha
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
nếu y = 4 thì x3784 : hết cho 3 <=> x +3 + 7 + 8 + 4 : hết cho 3
<=> 22 + x : hết cho 3 => x = 2 ,5.8
nếu y = 8 thì x3788 : hết cho 3 <=> x + 3 + 7 + 8 + 8 : hết cho 3
<=> 26 + x : hết cho 3 => x = 1 , 4 ,7
Để a chia 5 dư 4 và a chia hết cho 2 thì y=4
=>\(a=\overline{5x14}\)
a chia hết cho 3
=>\(5+x+1+4⋮3\)
=>x+10 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
mà a là số tự nhiên có 4 chữ số khác nhau
nên loại số 5
=>\(x\in\left\{2;8\right\}\)
Để A chia 5 dư 4 thì y = 4 hoặc y = 9
mà A chia hết cho 2 nên y = 4
Để A chia hết cho 3 thì 5 + x + 1 + 4 chia hết cho 3
\(\Leftrightarrow\) 10 + x chia hết cho 3
\(\Rightarrow\) x là 2;5;8
Vậy A là 5214; 5514; 5814
Để x46y chia hết cho 2
Thì y phải là các số 0; 2;4;6;8
Và x bằng bất kì
Để x46y khác nhau chia hết cho 9
Thì (x + 4 + 6 + y) chai hết cho 9 (x \(\ne\)y;4;6 ; y \(\ne\) x,4,6)
=> x + 10 + y chai hết cho 9
=> x + y = 8
=> x = 3 ; y = 5