K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

ngu thế bài khác

21 tháng 5 2021

\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }^2_{ }}\)

 
  
  
16 tháng 5 2018

Xét tam giác ABC và ACD có cùng chiều cao chính là chiều cao hình thang, đáy dc gấp 3 đáy AB => S_ACD gấp 3 lần S_ABC.

Vậy diện tích tam giác ABC là : 16 : (3 + 1) = 4 (cm2)

Xét tam giác MAB và MAC có chung đáy MA mà CD gấp 3 lần AB (vì AB và CD cùng vuông góc với MD) => S_MAB = 1/3 S_MAC => S_MAB = 1/2 S_ABC

Vậy diện tích MAB là : 4 : (3-1) = 2 (cm2)

16 tháng 5 2018

cảm ơn mày nhá

22 tháng 4 2018

31 tháng 3 2023

SMAB=2cm2

30 tháng 1 2019

Nối B với D và nối A với C.

Xét 2 tam giác: BAD và CAD. Có:

-Chung đáy AD

-Chiều cao AB = 1 3 CD

=> S.BAD = 1 3 S.CAD

Do đó: S.BAD = 1 4 S.ABCD

S.BAD =  16 : 4 = 4 ( c m 2 ) 

S.BDC =  16 - 4 = 12 ( c m 2 )

Tam giác BDM và tam giác CDM có chung đáy MD và chiều cao BA =  1 3 CD

Do đó: S.BDM =  1 3 S.CDM

Suy ra S.BDM = 1 2 S.BDC 

Mà S.BDC  = 12 c m 2 . Nên S.BDM  = 12 : 2 = 6 ( c m 2 )

Vì S.MAB  = S.BDM  - S.BAD . Nên S.MAB  = 6 – 4 = 2 ( c m 2 )

Đáp số: S.MAB = 2 ( c m 2 )

13 tháng 12 2016

Hai đáy hình thang song song , kéo dài 2 đáy AB và CD làm sao cắt nhau được ... bạn xem lại đề

27 tháng 6 2017

Đề đúng mà. mk cũng đg cần bài này !?!

17 tháng 6 2019

S(ABD) = 1/3 S(ACD) Mà hai hình này chung đáy AD => chiều cao hạ từ B = 1/3 chiều cao hạ từ C. => S(MAB) = 1/3 S(MAC) => S(MAB) = 1/2 S(ABC) S(ABC) = 1/3 S(ACD) = 1/4 S(ABCD) => S(MAB) = 1/2 x 1/4 = 1/8 S(ABCD) Vậy S(MAB) = 16 x 1/8 = 2  c m 2

Xét ΔMCD có AB//CD
nên ΔMAB~ΔMDC

=>\(\dfrac{S_{MAB}}{S_{MDC}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\)

=>\(S_{MAB}=\dfrac{1}{9}\cdot S_{MDC}\)

Ta có: \(S_{MAB}+S_{ABCD}=S_{MDC}\)

=>\(S_{ABCD}=S_{MDC}-\dfrac{1}{9}\cdot S_{MDC}=\dfrac{8}{9}\cdot S_{MDC}\)

=>\(S_{MDC}=64:\dfrac{8}{9}=72\left(cm^2\right)\)

=>\(S_{MAB}=\dfrac{1}{9}\cdot72=8\left(cm^2\right)\)

30 tháng 12 2017

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Câu 2:

Ta thấy:

$\frac{S_{BDM}}{S_{CDM}}=\frac{AB}{CD}=\frac{1}{3}$ (chung cạnh đáy $DM$)

Lại có:

$S_{ABD}=\frac{AB\times AD}{2}$

$S_{ABCD}=\frac{(AB+CD)\times AD}{2}=\frac{(AB+3\times AB)\times AD}{2}=\frac{4\times AB\times AD}{2}$

Suy ra $\frac{S_{ABD}}{S_{ABCD}}=\frac{1}{4}$

Suy ra $S_{ABD}=\frac{1}{4}\times S_{ABCD}=\frac{1}{4}\times 16=4$ (cm2)

$S_{BCD}=S_{ABCD}-S_{ABD}=16-4=12$ (cm2)

Hai tam giác $BDM$ và $CDM$ có tỉ số diện tích là $\frac{1}{3}$, hiệu diện tích là $S_{BCD}=12$ cm2 nên diện tích tam giác $BDM$ là:
$S_{BDM}=12:(3-1)\times 1=6$ (cm2)

$S_{ABM}=S_{BDM}-S_{BAD}=6-4=2$ (cm2)

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Câu 1:

$(x+1)+(x+3)+(x+5)=30$

$x+1+x+3+x+5=30$

$(x+x+x)+(1+3+5)=30$

$3\times x+9=30$
$3\times x=30-9=21$

$x=21:3$

$x=7$