K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

hình chữ nhật hả bạn???????????

20 tháng 1 2020

Gọi K là giao điểm 2 đường chéo AC và BD => K là trung điểm AC và BD (tính chất HCN)
Trong tam giác MAC: MA^2 + MC^2 = 2*MK^2 + (1/2)*AC^2 (1) (công thức trung tuyến)
Trong tam giác MBD: MB^2 + MD^2 = 2MK^2 + (1/2)*BD^2 (2) (công thức trung tuyến)
Mặt khác AC = BD (đường chéo HCN) (3)
Từ (1), (2), (3) => MA^2 + MC^2 = MB^2 + MD^2 (đpcm)

20 tháng 1 2020

thanks bạn nhiều

A B C D M

Bài làm

Ta có: MA = MD ( hai tia đối nhau )

          MC =  MB ( hai tia đối nhau )

=> MA + MC = MD + MB

=> MA2+MC2=MD2+MB2 ( đpcm )

Vậy MA2+MC2=MD2+MB2

# Chúc bạn học tốt #

30 tháng 1 2016

em lớp 5 nên ko biết

2 tháng 8 2020

A F B D C E M

Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:

BM2 = BD2 + DM2 => BD2 = BM2 – DM2    (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông CEM, ta có:

CM2 = CE2 + EN2 => CE2 = CM2 – EM2    (2)

Áp dụng định lí Pi-ta-go vào tam giác vuông AFM, ta có:

AM2 = AF2 + FM2 => AF2 = AM2 – FM2    (3)

Cộng từng vế của (1), (2) và (3) ta có:

BD2 + CE2 + AF2 = BM2 – DM2 + CM2 – EM2 + AM2 – FM2 (4)

Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:

BM2 = BF2 + FM2     (5)

Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:

CM2 = CD2 + DM2     (6)

Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:

AM2 = AE2 + EM2     (7)

Thay (5), (6), (7) vào (4) ta có:

BD2 + CE2 + AF2

= BF2 + FM2 – DM2 + CD2 + DM2 – EM2 + AE2 + EM2 – FM2

= DC2 + EA2 + FB2

Vậy BD2 + CE2 + AF2 = DC2 + EA2 + FB2