K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

Toán lớp 6 Phân sốToán chứng minh

Nguyễn Triệu Yến Nhi 07/05/2015 lúc 16:44

a)

A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1 

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

29 tháng 8 2016

nho k nha

27 tháng 2 2015

phân số nên mik k viết đc

18 tháng 3 2018

a,\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi ƯCLN(a2+a-1;a2+a+1) = d

Ta có: \(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\) 

\(\Rightarrow a^2+a+1-\left(a^2+a-1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d=\left\{\pm1;\pm2\right\}\)

Lại có: \(a^2+a-1=a\left(a+1\right)-1\)

Vì \(a\left(a+1\right)\)là số chẵn => a(a+1) - 1 là số lẻ 

=> d là số lẻ

=> d không thể bằng 2 hoặc -2

=> d = {1;-1}

Vậy...

DD
27 tháng 5 2021

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)

Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản. 

24 tháng 3 2018

Bạn có thể dựa theo bài này

https://olm.vn/hoi-dap/question/84156.html

Bạn sao chép rồi làm nha

Tk mk nha

24 tháng 3 2018

https://olm.vn/hoi-dap/question/84156.html

Bạn dựa theo câu hỏi này nha

Tk mk nha

21 tháng 6 2016

a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A -1

Rút gọn đúng cho.

b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1\)\(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d

Nên d = 1 tức là \(a^2+a+1\)\(a^2+a-1\)là nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

21 tháng 6 2016

thực sự là toán lớp 6 ko ?

?"