K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMND và ΔEND có 

NM=NE(gt)

\(\widehat{MND}=\widehat{END}\)(ND là tia phân giác của \(\widehat{MNE}\))

ND chung

Do đó: ΔMND=ΔEND(c-g-c)

Suy ra: \(\widehat{NMD}=\widehat{NED}\)(hai góc tương ứng)

mà \(\widehat{NMD}=90^0\)(gt)

nên \(\widehat{NED}=90^0\)

hay DE\(\perp\)NP

b) Ta có: ΔNMD=ΔNED(cmt)

nên DM=DE(hai cạnh tương ứng)

Ta có: NM=NE(cmt)

nên N nằm trên đường trung trực của ME(1)

Ta có: DM=DE(cmt)

nên D nằm trên đường trung trực của ME(2)

Từ (1) và (2) suy ra ND là đường trung trực của ME

thế còn câu d ạ owo, 2 câu kia e biết rồi ạ owọ"

21 tháng 2 2021

hình bn  tự kẻ nha ^^

a, vì N là phân giác \(\widehat{MNP}\)\(\left(gt\right)\Rightarrow\)\(\widehat{END}\)\(=\)\(\widehat{MND}\)

Xét tam giác MND và tam giác END có;

\(\widehat{M}\)\(=\)\(\widehat{E}\)\(=\)\(90\)độ ( gt)

CẠNH ND CHUNG

\(\widehat{MND}\)\(=\)\(\widehat{END}\)( CMT)

\(\Rightarrow\)TAM GIÁC MND \(=\)TAM GIÁC END (G-C-G)

21 tháng 2 2021

a) Xét tam giác MND vuông tại M và tam giác END vuông tại E có :

                   ND : cạnh chung

                   MND=END ( ND phân giác MNE)

Vậy tam giác MND = tam giác END ( ch-gn)

b) Vì tam giác MND = tam giác END (cmt)

=>MN=EN(cctứ); MD=ED(cctứ)

Vì MN=EN(cmt)=> N thuộc đường trung trực của ME (1)

Vì MD=ED(cmt)=> D thuộc đường trung trực của ME(2)

Từ (1) và (2) => ND là đường trung trực của ME

c) Xét tam giác END vuông tại E có :

            ED^2 + EN^2 = ND^2 (định lí Pytago)

           NE^2 = ND^2 - ED^2

          NE^2 = 10^2 - 6^2 = 100 - 36 = 64

   => NE = 8 (cm) 

*ko hiểu sao rảnh mà lớp 8 đi giải bài lớp 7 :))))) *

4 tháng 5 2018

a

xét tam giác MND & tam giác END

có ND chug

góc M=gócE(=90dộ)

góc MND=gócDNE

=>  tam giác MND = tam giác END (g.c.g)

=> NE=NM(2 cạnh tươg ứg)

Từ cm câu a ta có NE=NM(2 cạnh tươg ứg) =>NE&NM cách đều ME =>  ND là đường trung trực của ME(t/c đg trug trực)

dựa vào địh lí pytago đảo

=> ND + NE = DE 

=>10^2+NE^2=36^2

=>NE^2=36^2-10^2=(TỰ TÍNH MIK TÍNH KO RA)

a) Xét ΔEAM và ΔNAD có 

AE=AN(gt)

\(\widehat{EAM}=\widehat{NAD}\)(hai góc đối đỉnh)

AM=AD(A là trung điểm của MD)

Do đó: ΔEAM=ΔNAD(c-g-c)

Suy ra: ME=ND(Hai cạnh tương ứng)

21 tháng 7 2018

Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!

19 tháng 12 2017

a) xét tam giác MND và tam giác END ta có

MN = EN

góc MND = góc END

ND: cạnh chung

suy ra tam giác MND = tam giác END

suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ

b) ta có tam giác MND = tam giác END suy ra MD = ED

xét tam giác DMK và tam giác DEP ta có 

góc KMD = góc PED ( =90độ)

MD = ED

góc MDK = góc EDP( hai góc đối đinh)

suy ra tam giác DMK = tam giác DEP(đpcm)

c)ta có tam giác DMK = tam giác DEP suy ra MK=EP

ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP

xet tam giác KNDvà tam giác PND ta có

NK=NP

KND= PND

ND:cạnh chung

suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP

ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP

suy góc NDK = góc NDP =90độ

suy ra ND vuông góc với KP

19 tháng 12 2017

hello

Xét ΔNMD vuông tại M và ΔNED vuông tại Ecó

ND chung

góc MND=góc END

=>ΔNMD=ΔNED