Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)
Bài 1 : Tìm x, biết :
\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\) \(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+\left(x-2\right)\left(2\left(x+2\right)-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2\left(x+2\right)-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\\left(x+2\right)^2+2>0\end{matrix}\right.\Rightarrow x=2\)
Ta có:
24m4 + 1 = n2
25m4 - (m4 - 1) = n2
+ Nếu m chia hết cho 5 thì m.n chia hết cho 5 (đpcm)
+ Nếu m thuộc N; không chia hết cho 5, ta luôn chứng minh được m5 - m chia hết cho 5.
Thật vậy, với m không chia hết cho 4 thì m4 chỉ có thể tận cùng là 1 hoặc 6 chia 5 dư 1
=> m5 và m cùng dư trong phép chia cho 5
=> m5 - m luôn chia hết cho 5 với m thuộc N; m không chia hết cho 5
=> m.(m4 - 1) chia hết cho 5
Mà (m;5)=1 => m4 - 1 chia hết cho 5
Kết hợp với 25m4 chia hết cho 5 => n2 chia hết cho 5
=> n chia hết cho 5 => m.n chia hết cho 5
Vậy m.n chia hết cho 5 (đpcm)