Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Nếu trong 11 số tự nhiên đó có 1 số chia hết cho 10 thì bài toán đã được chứng minh.
Nếu trong 11 số đã cho, không có số nào chia hết cho 10, ta đặt:
A1= 1
A2= 1+2
A3= 1+2+3
...
A11= 1+2+3+...+10+11
Ta biết rằng, trong 1 phép chia cho 10, ta luôn nhận được 10 số dư từ 0->9
Vì ta có 11 dãy số nên ít nhất có 2 dãy số có cùng số dư trong phép chia cho 10.
Giả sử, dãy Bm và Bn có cùng số dư trong phép chia cho 10 thì ( Bm - Bn ) chia hết cho 10. => đpcm.
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
Gọi số cần tìm là abc (1<=a<=9;0<=b;c<=9)
Số viết ngược lại là cba.
Ta có:abc-cba=n2
=>(100a+10b+c)-(100c+10b+a)=n2
=>100a+10b+c-100c-10b-a=n2
=>(100a-a)+(10b-10b)+(c-100c)=n2
=>99a-99c=n2
=>99(a-c)=n2
=>32.11.(a-c)=n2
Để 11(a-c) là SCP thì a-c=11k2 nên a-c chia hết cho 11
Do đó a=c
KL:các số thỏa mãn có dạng là cba
Đúng 100%