K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TN
Thành Nam
Admin VIP
14 tháng 3 2020
test
14 tháng 3 2020

Nếu muốn trao đổi bạn có thể đăng sang box GDCD nhé

31 tháng 7 2016

Có mình 

31 tháng 7 2016

\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)

\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)

\(2x^2-2x+1-12-4x^2+2x^2-10x\)

\(-12x-11\)

23 tháng 6 2017

C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)

Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)

23 tháng 6 2017

* BĐT Cauchy - Schwars = BĐT Bunhiacopxki

- Thông thường :

( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)

- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn

(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)

Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)

* BĐT AM-GM

- trung bình nhân (2 số)

với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b

- Trung bình nhân ( n số )

Với x1 , x1 , x3 ,..., xn \(\ge0\)

Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)

Dấu "=" xảy ra khi x1 = x2 =...=xn

-Trung bình hệ số :

Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số

Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)

Dấu "=" xảy ra khi x1 = x2 = xn

=================

Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có

Được dùng nhé bạn

21 tháng 3 2021

Nếu đã biến đổi tương đương rồi thì cần gì phải dùng tính chất của bất đẳng thức nữa bạn, bằng không ta dùng bất đẳng thức để chứng minh luôn
VD: chứng minh $a;b;c>0$ thì $a^2+b^2+c^2 \geq ab+bc+ca$

C1: Áp dụng bất đẳng thức Cauchy có:
$a^2+b^2 \geq 2ab;b^2+c^2 \geq 2bc;c^2+a^2 \geq 2ac$

suy ra $2(a^2+b^2+c^2) \geq 2(ab+bc+ca)$

và ta có đpcm
C2 Biến đổi tương đương
BĐT $⇔2.(a^2+b^2+c^2) \geq 2.(ab+bc+ca)$

$⇔(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2) \geq 0$

$⇔(a-b)^2+(b-c)^2+(c-a)^2 \geq 0$ (luôn đúng)
Vậy bất đẳng thức đã được chứng minh
Tóm lại là dùng cũng không sao, miễn đúng là được, nhưng mình khuyên rằng nên làm theo 1 hương thôi.

4 tháng 4 2020

Mẹo thì không có đâu bạn ạ! ^_^. Cơ bản là bạn phải hiểu vấn đề của bài thôi!

Bạn thử lên youtube học của THẦY QUANG thử xem 

Thầy này dạy dễ hiểu lắm 

19 tháng 10 2020

Chứng minh một đoạn thẳng cố định, đoạn thằng này tạo bởi điểm đó và 1 điểm khác (điểm này cố định)

Chứng minh là các điểm đặc biệt của 1 tam giác cố định , hay tứ giác cố định gì đó

Chứng minh điểm đó kết hợp với các điểm khác tạo ra các hình đặc biệt , như Hình Bình Hành , Hình Thang , Hình Tam Giác Cân...

Chứng minh là tâm đường tròn nội tiếp , ngoại tiếp tứ giác , tam giác nào đó

Chứng minh điểm đó là giao điểm của 2 đường thẳng cố định 

Mới nghĩ ra đến đây thôi hehe , có gì nghĩ ra tiếp bổ sung thêm cho 

19 tháng 10 2020

Hoặc chứng minh điểm đó là trực tâm , trọng tâm , trung điểm đoạn thẳng cố định 

11 tháng 3 2018

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!

9 tháng 12 2021

1 + 1 = 2

2200 x 121121 = 266466200

HT

Nick này rẻ quá

Đắt hơn đi