Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=|\sqrt{5}-1|\)
= \(\sqrt{5}-1\)
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì
\(2t=t^2-11\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)
Vì \(t\ge0\) nên \(t=1+2\sqrt{3}\)
\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)
\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)
\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)
Giải pt trên tìm được x
c) ĐK: \(x\ge0\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(2b^2+2ab=4\left(a+b\right)\)
\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)
Vậy pt có 1 nghiệm duy nhất x = 1.
b) ĐK: tự làm
Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(-a^2b^2+10=3ab\)
\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)
Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)
Bạn tự làm tiếp nhé
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
câu b bạn phân tích x2 +5x + 6 =(x+2 )(x+3) và 3x -x2 = x(3-x ) rồi đặtnhân tử chung tương tự câu a ,
=\(\dfrac{x+3+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}\)
=\(\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}\)
=\(\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)
Ái chà, câu này hơi dài.
\(J=\sqrt{1^3+2^3+3^3+...+100^3}\)
\(J^2=1^3+2^3+3^3+...+100^3\)
Chú ý nhé :)
Ta có: \(1^3=0+1\)
\(2^3=1.2.3+2\)
\(3^3=2.3.4+3\)
...
\(100^3=99.100.101+100\)
\(\Rightarrow J^2=\left(1+2+3+...+100\right)+\left(1.2.3+2.3.4+...+99.100.101\right)\)
Đặt \(A=\left(1+2+3+...+100\right)\)
\(A=100.\left(100+1\right):2=5050\)
Đặt \(B=1.2.3+2.3.4+...+99.100.101\)
\(\Rightarrow4B=1.2.3.4+2.3.4.\left(5-1\right)+...+99.100.101.\left(102-98\right)\)\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+99.100.101.102-98.99.100.101\)\(4B=99.100.101.102\)
\(4B=101989800\)
\(B=25497450\)
\(J^2=A+B=5050+25497450=25502500\)
\(J=\sqrt{25502500}=5050\)
Chúc bạn học tốt :))
mình cảm ơn bạn nha !!!