Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk
1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)
mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21
=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.
=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}
Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.
2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3
để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)
Khi đó n = -5 ; -3 ; -1 ; 1
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}
=> n= tự tìm
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa
Ta có : \(4n+5⋮5\)
\(\Leftrightarrow4n⋮5\)
\(\Leftrightarrow n⋮5\)
\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)
\(b,3n+4⋮n-1\)
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)
Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)
=> \(n-1\in\left\{1;7\right\}\)
=> \(n\in\left\{2;8\right\}\)
vì n thuộc z nên:
3n+24 chia hết cho n-4
n bằng 5
a) Ta có: \(3n+24⋮n-4\)
\(\Leftrightarrow3n-12+36⋮n-4\)
mà \(3n-12⋮n-4\)
nên \(36⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(36\right)\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)