K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Cũng hay đó, đã

1 tháng 11 2020

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)

Vì \(\sqrt{x^2+x-1}\ge0\)

\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)

Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)

Cộng (1) và (2) ta có: 

\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x\ge x^2-x+2\)

\(\Leftrightarrow x^2-x+2-1-x\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)

Vì \(\left(x-1\right)^2\ge0\forall x\)(4)

Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ

Vậy \(x=1\)

1 tháng 11 2020

\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)

\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)

\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)

\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)

\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )

14 tháng 4 2016

tự giải được pen ta = 4 => PT luôn có 2 nghiệm phân biệt x1 và x2

áp dụng Vi-Ét: \(x1+x1=2\left(m+1\right)\)\(x1x2=m^2+2m\)

14 tháng 4 2016

gọi x1=a, x2=b để mình đnáh máy cho nhanh nhen:

\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=>\left(a+b\right)^3-3ab\left(a+b\right)=8\)

thay vi-ét bên trên vào là ok 

22 tháng 8 2019

\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)

\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)

\(\Leftrightarrow x^2+4=4x+8\)

\(\Leftrightarrow x^2-4x-4=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)

Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)

P/S: Ko chắc

\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)

\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Rightarrow x^2+4=2x+4\)

\(\Rightarrow x^2+4-2x-4=0.\)

\(\Rightarrow x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy .............

Study well